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ABSTRACT. In a recent paper , Liu—Truong—Xiao—Zhao proved several
conjectures (including the Breuil-Buzzard—Emerton conjecture and Gouvéa’s
conjecture on slopes of modular forms) by computing the slopes vy, (a) of certain
local representations Vkﬂ. In this article, we complement the results in
by explicitly computing the representations Vk,a themselves, for many small
slopes vp(a).

1. INTRODUCTION AND RESULTS

Let p be an odd prime number and k£ > 2 be an integer, and let a be an element of
Z, such that v,(a) > 0. There has been considerable interest in computing certain
local representations V' , which arise as representations associated with modular
forms (see [LTXZ|, [Ars21], [Berl0], [Bre03a), [Bre03b|, [Edi92], [BLZ04], [BG15],
[BG09|, [BG13], [GG15]). In particular, a conjecture of Breuil-Buzzard-Emerton
dating back to 2005 states that, if k is even and the slope v,(a) is not an integer,
then V , is irreducible. This conjecture was finally proved by Liu-Truong—Xiao—
Zhao in . The goal of this article is to further explore the Breuil-Buzzard—
Emerton conjecture and complement the result in by explicitly computing
many examples of V, ,, for many small slopes v, (a).

1.1. Background. The main objects we study are irreducible two-dimensional
crystalline representations of the absolute Galois group of Q,. These are up to a
twist parametrized by an integer k£ > 2 and an element a € Z,, such that v,(a) > 0,
and we denote by Vj , the representation corresponding to the parameters (k,a).
An explicit construction of Vj 4 is given in Subsection 3.1 of [Bre03b]. Therefore, all
two-dimensional crystalline representations of Gg, are of the form Vj , ® 1 for some
character n of Gg, that is the product of an unramified character and a power of
the cyclotomic character. We define V', , as the semi-simplification of the reduction
modulo the maximal ideal m of Zp of a Galois stable Zp—lattice in Vi, (with the
resulting representation being independent of the choice of lattice). The question
of computing V. has been studied extensively, and we refer to the introduction

of |Ars21| for a brief exposition of it.
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In the article [Ars21], these representations have been computed over certain “non-
subtle” components of weight space. We say that a weight k belongs to a “non-
subtle” component of weight space if and only if

k#3,4,...,2v,2v+ 1mod p — 1.
P

Thus there are max{%l — v+ 1,0} many “non-subtle” components of weight space.
This article is a continuation of , in which we completely classify these rep-
resentations over the “non-subtle” components of weight space, both for integer
and non-integer slopes. Before stating the main results, let us first introduce some

terminology.

Let us denote v = |vy(a)] +1 € Z>o. We fix embeddings Q — Q, < C,, and to
look at the space of continuous homomorphisms # = homcts(sz,(C;). We have
Zy = (Z/(p—1)Z) x Zyp, and hom(Zy, C}) is isomorphic to the open disk in C,
with center 0 and radius 1, via the identification x <> x(1) — 1. Thus # is the
disjoint union of p — 1 open disks of radii 1. We identify the weight £ > 2 with the
continuous homomorphism x — z*~2, so that k > 2 is a point on the disk indexed
by k—2mod p— 1. We say a point of # is “integral” if it is associated with a
weight in this fashion.

The main theorem in computes Vlm in the neighborhood of a = 0:
ind(wh™') ifp+1f{k—1,

(py=1 ® p_y=y) @wrt it p+1[k—1,
whenever v,(a) > [ =%

7). This theorem tells us what Vk,a is at a discrete set of
points in the aforementioned p — 1 disks.

Via 2 Vi {

k2J

The theorems we prove indicate that these points play a fundamental role: it seems
that the p — 1 open disks can be split into regions by concentric circles centered at
these points in a way that V , depends on the region k belongs to. For example,
the following diagram illustrates how the disk containing the weight 10 is split into
regions when p > 11 and 3 < v,(a) < 4. There are four centers of the bundles of
concentric circles, and they are exactly the points k belonging to the disk (i.e. such
that £ = 10 mod p — 1) and such that vp( ) > L’;_f] (i e. L =2 | < 4). In fact, they
are the same as the pomts satisfying & ﬁ <4. By [B , at these four points
we have Vk a = md( ). The dlagram illustrates closed disks around the points,
of radii p~!,p~2, and p~3. As we show in theorem [1, in this situation Vi, is
always one of these four representations, depending on the color of the region that

k belongs to, as illustrated.
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2p+8

3p+7

Theorems 1/and 2| prove a general version of this, in the case when the corresponding
disk is what we label “non-subtle”: this label depends on the slope v,(a) and
roughly means that the bound L%J is optimal for any k belonging to that disk,
i.e. that there are no additional points k on that disk satisfying the improved
bound vp(a) > % but not v,(a) > L% at which the associated representation
is distinct from the “typical” one, which in the context of the diagram on the
previous page means the representation corresponding to the yellow region.

Let us write h for the number in {1,...,p — 1} which is congruent to h mod p — 1.
Let v = [vp(a)| + 1 € Z~o, and let s be the number in {1,...,p — 1} which is con-
gruent to k —2 mod p — 1. Let us say that k is “subtle” if s € {1,...,2v — 1},
and k is “non-subtle” if s € {1,...,2v —1}. An open disk of # consists either
entirely of “subtle” points or entirely of “non-subtle” points, so we can also refer
to the p — 1 open disks of # as either “subtle” or “non-subtle”. In particular, the
min{p — 1,2v — 1} disks containing 3,...,2v + 1 are “subtle”, and all other disks
are “non-subtle”. Note that whether a weight is “subtle” or not depends on the
value of v.

Let 2, denote the open disk of radius 1 around s 4+ 2 € #, and let us consider the
set

Bs,={s+p(p-1)+2|€{0,...,v—2}}.
In particular, if v =1 then B, , = @, and in general B; , is a set of v — 1 points in
Ds. Let
bo < -+ <b,_o
be the elements of B, in increasing order. Therefore if ¢ € {0,...,v — 2} then
b; = s+i(p— 1)+ 2 and, by the main result of ,

V.o = ind(whi ™).

Let us also define b,y = s+ (v —1)(p — 1) + 2. Fori € {0,...,v — 2} and j € Zs,,
let
B ={t € Ds|j <wpt—bi) <j+1}
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be the half-open annulus which is the complement of the closed disk of radius p=7—!
around b; in the closed disk of radius p~/ around b;. The integral points in %f ’;/
are the points on the circle of radius p~7 around b; = s+ i(p — 1) + 2. Finally, let

%S:V = @s\ UiG{O """" V72}7j>0 %Z’ju’
so that % is partitioned into the disjoint sets

(%) (%Y UL i €{0,...,v—2}, j € Zuo).

)

Note that the definition of this partition depends on both s and v. For | € Z and
A € F let us define

Irr(1) = ind(wh 1) and Red, , (1, \) = w72 @ py w1

The first result is a complete classification of Vk,a over the “non-subtle” components
of weight space for v,(a) & Z.

Theorem 1. Recall that k > 2 is an integer and that s is defined as the integer
in {1,...,p— 1} which is congruent to k —2 mod p — 1. Suppose that k is “non-
subtle”, i.e.

k#3,4,...,2v,2v+ 1 mod p — 1.

Suppose also that the open disk D5 of radius 1 around s + 2 € W is partitioned into
disjoint sets as in (2°"). If v,(a) € Z then

o Irr(b,—1) ifke %",
k,a = Iy (baxgiv—j—13) if k € %zsjy

This result is known for v = 1 by the work of Buzzard and Gee in [BG09| and for
v = 2 by the work of Bhattacharya and Ghate in [BG15]|.

We also prove a similar theorem for v,(a) € Z. The precise statement of this is the
following theorem, which is a complete classification of Vi, , over the “non-subtle”
components of weight space for v,(a) € Z.

Theorem 2. Recall that k > 2 is an integer and that s is defined as the integer
in {1,...,p— 1} which is congruent to k —2 mod p — 1. Suppose that k is “non-
subtle”, i.e.

k#3,4,...,2v,2v+ 1 mod p — 1.

Suppose also that the open disk D5 of radius 1 around s + 2 € W is partitioned into
disjoint sets as in (Z°")). If vp(a) =v — 1 € Zsq then

Red‘gW(O, Ak,y) if k € ,@S’U,
Vk,a = Reds,y(j7 )\k,y7i7j) ka S %:}u and i +] <Vv-— 1,
Ier(b;) if k€ 2 andi+j>v—1,

where

(2 e

)\k,V:WEEp7

v—1
i+j . —j—2\(s—v+j+2
(71)V+1+]+1(V7]71)(V Z )(€ v+j+

_ v—j—1 )a X
ki = (F—s—i(p—1)—2)pr—7-1 . € Fp .
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Note that Ay, ; is indeed a unit (and therefore we can think of it as an element of
]F;) since the integral points in %f]” consist precisely of those points on the circle
of radius p~7 around b; = s+ i(p — 1) + 2 and so

vp((k—s—i(p—1)=2)p" 7 ) =v - 1L
This result is known for v = 2 by the work of Bhattacharya, Ghate, and Rozensztajn
in [BGR18].

The paper gives an algorithm which takes as input a prime p, a weight k,
an eigenvalue a, and a parameter called “radius” which determines the precision
of the computations, and if the radius is large enough it computes V.. An
implementation of the algorithm in SageMath is available at

lhttp://perso.ens-lyon.fr/sandra.rozensztajn/software/index.html|

As theorems 1] and 2 give complete classifications of V;W, one can use this algo-
rithm to verify them for any given triple (p, k, a). The complexity of the algorithm
depends on the size of the extension field generated by a, so in practice it is much
faster to verify theorem [2. Additionally, the statement of theorem 2| is more com-
plicated, especially the formulas for Ay ., Ak, S0 it is better suited for this type
of computer verification. We have verified theorem 2| for the triples in the following
table.

p k a “radius” Vk,a

7T 8 49 3 ind(w?)

7 14 49 3 ind(wi?)

7 20 49 4 paw® @ psw?
7 26 49 3 pw® @ pw?
7 32 49 3 paw® @ pow?
7 38 49 3 u1w5 &) ,u1w2
7 44 49 3 Uzw® @ psw?
7 50 49 3 pew @ pe

7 56 49 3 ind(w3?)

11 38 121 3 prw® @ pgw?
11 39 121 3 15w @ pgw?
11 40 121 3 prw” @ psw?
11 41 121 3 pow’ @ pew?
11 42 121 3 1w @ pw?

LThe algorithm actually computes the GL2(Qjp)-representation associated with Vk,a via the bi-
jective correspondence given in Theorem 2 in [Ars21], and one can use Theorem 2 in [Ars2]] to
then compute Vi 4.


http://perso.ens-lyon.fr/sandra.rozensztajn/software/index.html
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2. COMPUTING V' , BY COMPUTING O,

From now on we assume the notation from sections 2, 3, 4, and 6 of [Ars21].
Moreover, we assume that k > p'® as in section 5 of [Ars21]. For [ € Z let us
define

BIrr(l) = (indgz all/T) w2,
where [; and ls are the unique integers such that
Il=li+(p+1)is+2andl; € {0,...,p—1}.
Forl e Z and X € Ef let us define

BRedS,U(l, /\)
= W(M) A wy_l_l) S W(M, )\_1, ws+l_y+2).

Theorem 2 in [Ars2l| implies that our main theorems can be rewritten in the
following equivalent forms. Recall that we assume p > 2 throughout.

Theorem 3. Recall that k > 2 is an integer and that s is defined as the integer
in {1,...,p— 1} which is congruent to k —2 mod p — 1. Suppose that k is “non-
subtle”, i.e.

k#3,4,...,2v,2v + 1 mod p — 1.

Suppose also that the open disk D5 of radius 1 around s + 2 € W is partitioned into
disjoint sets as in (£°7). If vp(a) € Z then

5 = Blrr(b,—1) if ke %",
ko = BIrr (bmax(i—j-1y) if k€ %

)

Theorem 4. Recall that k > 2 is an integer and that s is defined as the integer
in {1,...,p— 1} which is congruent to k — 2 mod p — 1. Suppose that k is “non-
subtle”; i.e.

k#3,4,...,2v,2v+ 1 mod p — 1.

Suppose also that the open disk D5 of radius 1 around s + 2 € W is partitioned into
disjoint sets as in (Z°"). If vy(a) =v —1 € Zs¢ then

BRed; (0, M\,)®  if k € 257,
o =4 BReds,(j, Aew,i ) ifk € andi+j<v—1,
Blr(b;) ifk € %)) andi+j>v—1,

where

s—v42 .
Ak = ((foizl)p)a_l cFy,

T o U 1 G i | G LG
kw,ig = (k—s—i(p—1)—2)p7—7-1 P

Thus our task is to prove theorems 3| and 4l
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3. COMBINATORICS

Throughout the proof we will refer to the combinatorial results in section 8 of [Ars21].
For convenience, we reproduce the statements here in the form we will use.

Lemma 5. Suppose throughout this lemma that
n,t,y € Z, b,d,k,l,w € Zxo, m,u,v € L.
(1) If u=vmod (p—1)p™~ ! then
(c-a) My =M, , mod p™.

(2) Suppose that u=t,(p— 1)+ s, with s, =1, so that s, € {1,...,p— 1}
and t, € Zx>o. Then

(¢-b) My, =1+ [u=p_1 0] + L2p+ O(tup?).
(8) If n <0 then

(c-c) Mo = 320 (= 1) (") Mu—n—i,0-
(4) If n >0 then

(c-d) Myn = (1+ [u=p-1 =1 0])(}}) mod p.

(5) If u > (b+ 1)d and | > w then
(0 T ) (58) = = 1
(6) If X is a formal variable then
(e-f) () () = 20 (D () ()
Consequently, if b+1 > d+ w then

i (i) (70)

(c-9) =3 (=P () (T My gy o
(7) We have
(c-i) SO = e
(8) We have
(c-9) 25 (T (o) = 0 ()
(9) We have
(c-k) Zj(_Dj (i) (jiw) = (-1 (l+§)}fb)'
Lemma 6. Let a € ZN|0,..., 5] and let {D;}iez be a family of elements of Z,,
such that D; = 0 fori & [0, ;:Cl‘]pand Uyw(De) =0 for all 0 < w < . Then

Zi Dixi(p71)+ayr7i(p71)fa — 92p

for some polynomial h with integer coefficients.
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Lemma 7. For o, A\, € Zxq let
La(X, 1)
be the (a + 1) x (a+ 1) matriz with entries
Ly =Yoo it (§)" 5100 Wsa(k, ),

where s1(l, k) are the Stirling numbers of the first kind and so(k, j) are the Stirling
numbers of the second kind. Then

L) (O3 ) = () 03))

Lemma 8. For a € Zx let B, be the (a+ 1) x (a + 1) matriz with entries
(—1)ititk

Bij =32k —0 ()1 =p)Fs1(l k)sa(k, ),

where s1(i,7) and so(k,j) are the Stirling numbers of the first and second kind,
respectively. Let {X; ;}i j>o0 be formal variables. For 8 € Zx¢ such that a > 3 let

S(a, B) = (S(avﬂ)w,j)ogw,jga
be the (a4 1) x (a+ 1) matriz with entries
S, Bluj = Ty Xig (0,1).
Then B,S(a, ) is zero outside the rows indexed 1,...,0 and
(BaS(a, )i = Xi;
forie{l,...,5}.
Lemma 9. For u,v,c € Z let us define
w o U—w
Fu#”vC(X) = Zw(_l)wic(c) (ii) (X:;w ) € QP[X]
Then
u x\9 uw \9 /X
Fu»”vC(X) = (v—c)(c) - (v—c) (c)

Lemma 10. Let X and Y denote formal variables, and let

¢ = (~Dial (S () + (Y))) € QX Y] Q(X,Y)

be polynomials over Q of degrees oo — j, for 1 < j < a. Let
M = (My j)o<w,j<a
be the (a4 1) x (a+ 1) matriz over Q(X,Y) with entries

Y—X) X
Mw,o = (_1)11}( Yw+)1

My =, (1" (o) () (550 = (0527).
for0<w < aand 0 < j < a. Then the first a — 1 entries of

Mc= MYy, c1,...,¢ce)T = (do,...,do)T

Y =X)at1
Y-« :

)

are zero, and d, =
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Lemma 11. Suppose that s, a, 8 € Z are such that
1<f<a<§-2<2

Let B = B, denote the matriz defined in lemmal8. Let M denote the (o + 1) x (a+ 1)
matric with entries in F), such that if i € {1,...,5} and j € {0,...,a} then

s—a—L+1 -1 -1 i+1 if i =0
M; = (9 - () )" if =0,
5] (z) { (s—z;:?-w) ij S 0’
and ifi € {0,...,a}\{1,...,8} and j € {0,...,a} then M;; is the reduction mod-

ulo p of

p—[j:O] ZZ}:O Biw Zv(_l)w—v (j+w—v—1) (S+5(;D—1)—Ot+j)

w—v v
B +B(p—1)—atj—
Yo (a5 )

17}

i — (le—Li=0] (s+B(p—1)—a+5\?
[i = 0]p~=0l( ; )

== 01 Biw () (V)

w=0 (s—a)w+1 "

Then there is a solution of

such that zy # 0.

Now let us prove some additional combinatorial results.

Lemma 12. Suppose that o € Z>g. For w,j € {0,...,a} let
ng'(zaz/}) € FP[’Z7¢]

denote the polynomial
S0 I ) () = (75)
Note that this depends on . Then
2?21(_1)a_j (w;gjl)Fw,j(za 1@ = (_1)(1([1” = a] - [w = O])(w;z)

Proof. Both sides of the equation we want to prove have degree a and the

coefficient of 2 on each side is 4; ([w = a] — [w = 0]). So the two sides are equal

if they are equal when evaluated at the points (z,) such that
(z,20) e {lu+~v(p—1)+a,u+a)|uef0,...,a}l,y€{0,...,a—1}}.

The right side is zero when evaluated at these points, and

Foj(u+y(p— 1)+ a,u+a) = L, (M@ H) (en)

by (c-g). Thus we want to show that
S (=D ) S () () = o)
for 0 < u,w < aand 0 <y < a. Since
() = ()G + 0w,

i(p—1)+j w i Jj—i
that is equivalent to

Yo~ ET Q) 0TI () = O).
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This follows from the facts that
Y0 () 755N = (G20
for ¢ > 0 by Vandermonde’s convolution formula, and
MED =) =0

since v € {0,...,a —1}. "
4. COMPUTING Oy 4
Throughout the proof we use the results from section 9 of [Ars21], which we repro-

duce here without proofs for convenience.

Lemma 13. Suppose that o € {0,...,v —1}.

(1) We have
(T _ a) (1 .KZ,@P anxafnyrfnpfa)
=y ,(_1)j (@)pj(p,l)m( ) °x23, gIP—Dtayr—ip—1)—a
— GZ (—1)7 ("Ja) °x23, g g3 (p—1)yr=ip=D—alp+1) L Q(p™).
(2) The submodule im(T — a) C ind$, 3, contains
> (Zl Bry C; (l(p f H)) °x73, i (P=D+Byr—i(p—1)—6
+ O(ap=Ftve 4 pr=1)
for all 0 < B < v <v and all families {C}icz of elements of Z,,, where
ve = ming <i<p(vp(Cr) +1).-

The O(ap‘ﬂ+vc —|—p”_1) term is equal to O(pp_l) plus

e/ S 17) R € R R A s T

Lemma 14. Suppose that « € Z and v € Q are such that

a€ {O v —1},
p(Ya(De)),
v" := min{v,(a) — a v} Up(Uy(Da)) for a < w < 2v — a,
v < vp(Dy(Da)) for 0 < w < a.

If, for j € Z,

Aj = (=1 (1= p) (%) Va(D),
then v < vp(Va(AW)) < vp(A;) forall j € Z, and

Zi(Ai —D;) °x23, xi(P*l)ﬂLayrfi(P*l)*a
=[a< s](—l)"“‘lDﬁ *Kx73, GrprnpTstoys—amn
— Do egzg, 0"a* My P

+ Eexzg, 0ot h+ Fexsg I 4+ ERR; + ERRy,

for some ERR1 and ERRs such that

ERR; € im(T — a) and ERRy = O(p?~r(@Fv 4 pr=a),
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some polynomials h,h', and some E,F € @p such that vy(E) =2 v and v,(F) > v'.
Lemma 15. Let {Ci}iez be any family of elements of Z,. Suppose that
ae{0,...,v—1}
and v € Q, and suppose that the constants
Di:=[i=0]C1 +[0 <i(p—1) <r—2a] 7L Ci(;(,571)
satisfy the conditions of lemma |14, i.e.
v < 0p(Va(D)),
v" :=min{v,(a) — @, v} < vy (Vy(De)) for a <w < 2v — a,
v < vp(Vy(Ds)) for 0 < w < a
Moreover, suppose that Cy is a unit. Let
¥ = (1—p) 0y (Ds) — C_1.
Suppose that v,(C_1) = v, (V).

(1) If vp(9') < ' then there is some element gen; € ¥, that represents a gen-
erator of N

(2) If vy(a) — a < v then there is some element gen, € #, that represents a
generator of a finite-codimensional submodule of

T <ind§z quot(a)) =T (ﬁa/ indf{z sub(a)) ,

where T denotes the endomorphism of ind$, quot(«) corresponding to the
double coset of (779).

Let us now prove the following additional results.

Lemma 16. Let {C;}iecz be any family of elements of Z,,. Suppose that o € Z and
v € Q and the constants

Di=[i=0]C1+[0<i(p—1) <r—2a] 37 Ci(,(,571)

are such that

o€ {0 ,v—1},
vp(Va(Ds)),
v" :==min{v,(a) — « v} < p(0y(Da)) for 0 < w < a.
Let
9= (1= p) (D) = C_y.

Then im(T — a) contains

(19/ + 0—1) .KZ,@p eaxp—lyr—a(p—i-l)—p—l-l 4 C—l .KZ,@p enxa—nyr—np—a
(1) + 3 e 0 Ee okzg, 0%he + Foxzg, W + H,
for some he, W', Ee, F, H such that

(1) Ee = 9¢(Da) + O(p") UO(0as1(Da)) U-- - UO(Ue_1(Da)),
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(2) if € + a — s < 26 — s # 0 then the reduction modulo m of 95he generates N,

(3) vp(F) > ', and

(4) H = O(p"~or( @ 4 p¥=) and if vy(a) — oo < v then

lipaH =g .KZ,@p enxa—nyr—np—a T O(pv—'up(a))

ap
with
g = ZAGFP Co(g [i‘]> + A(g?) + [T =p-1 20‘]B<2(1))’
where
A=-Ca+3L,G( 1)
and

—a+l
B=3C(1)
Proof. This lemma is essentially shown under a stronger hypothesis as lemma 15|
The stronger hypothesis consists of the three extra conditions that

0p(9(Da)) > minfu,(a) - a, v}

for all @ <w < 2v —a, that Cp € Z;, and that v,(C_1) > vp(¥'). These extra
conditions are not used in the actual construction of the element in (1), rather they
are there to ensure that v,(E¢) > min{v,(a) — a,v} for all a < € < 2v — ¢, that
the coefficient of () in g is invertible, and that we get an integral element once

we divide the element
9 + C*l [ 3 A0 anpflyrfa(P‘H-)*P*Fl + Cil °K 7T gnxafnyrfnpfa
,Q, Q,

by 9. Therefore we still get the existence of the element in (1) without these extra
conditions, and to complete the proof of lemma 16/ we need to verify the properties
of he, B¢, F,H, A, and B claimed in (1), (2), (3), and (4). The h¢ and F¢ come
from the proof of lemma 14, and E¢ ek 73, Hfhg is

Xe 0k 28, Dorzol AT B)(=0) am TP E YT,
with the notation for X¢ from the proof of lemma [14. Let E¢ = (—1)$*1X,. Then
condition (1) is satisfied directly from the definition of X¢. Let

he = (1) 52 Lol A€ (§ BT )(—0)mar Sy,

01

This reduces modulo m to the element

(1) Syl Ao S RY 2 = (—1)eot (Zoe ) xrecay oo
of
oe—r(r — &) = Ir_2¢(&) /o3¢ (£) = quot(§).

This element is non-trivial and generates N¢ if { + o — s < 2§ — s # 0, since then
X&tazsy &=« generates Ne. This verifies condition (2). Condition (3) follows from
the assumption v/ < v, (9, (Ds)) for 0 < w < @, as in the proof of lemma 14. Fi-
nally, condition (4) follows from the description of the error term in lemma 13, as
in the proof of lemma [15. L]
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Corollary 17. Let {C)}iez be any family of elements of Z,,. Suppose that
aed{0,...,v—1}
and v € Q, and suppose that the constants

Di:=[i=0]C1+[0<i(p—1) <r—2a] 7L Ci(;(,571)

are such that

v < vp(Va(De)),
v = min{v,(a) — a, v} < vy (Ds)) for a < w < 2v — a,
v < vp(Vy(Ds)) for 0 < w < a.

Suppose also that vy(a) ¢ Z. Let
¥ i=(1—p) *P(Ds) — C_1,
Ci=—Ci+X0, G (0.
If % then * is trivial modulo ., for each of the following pairs
(%, x) = (condition, representation).
(1) (vp(¥") < min{v,(C_1),v'}, ]\Afa)
(2)

3)

v =1,(C_1) < min{v,(¥),vp(a) — a}, ind%, sub(a)).

~

(4

—

(vp(a)—a<v<11p(0_1) é’ﬁCV'GZ; & Co gLy € 2a—1>0, ]\Afa)
(vp(a) —a<v<,(Cy) §Cc zy, ind% , quot(a)).

(5) (vpla) —a <v < v (Coy) & Cy € Z, rl), where
r
s a finite-codimensional submodule of
T(ind% , quot(a)).
Proof. There is one extra condition imposed in addition to the conditions from
lemma [16: that
v" == min{v,(a) — a,v} < vp(Fy(D,)) for a < w < 2v — a,

and it ensures that v,(E¢) > ¢’ for all @ < £ < 2v — a. Lemma 16| implies that the
element in (1) is in im(7" — a). Let us call this element ~.

(1) The condition v,(¢') < min{v,(C_1),v"} ensures that if we divide v by ¥’ then
the resulting element reduces modulo m to a representative of a generator of N,.

(2) The condition v = v,(C_1) < min{v, (), v,(a) — a} ensures that if we divide
~v by C_; then the resulting element reduces modulo m to a representative of a
generator of ind%. , sub(a).
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(3, 4, |5) The condition v,(a) —a < v < v,(C_1) ensures that the term with the
dominant valuation in (1) is H, so we can divide vy by ap~® and obtain the element
L+ O(p”*”P(a)), where L is defined by

Li= (Saer, Co(z )+ AGY) + [ =51 201B(34)) axczg, 0"a0 "y 00

with A and B as in lemma [16l This element L is in im(T — a), and it reduces
modulo m to a representative of

(Saer, Col3 B+ A(S) + [r =51 2](-1)7*B(13)) 5, X220,

As shown in the proof of lemma 15, if Cy € Z,; then this element always generates
a finite-codimensional submodule of

T(ind$ ; quot(a)),
and if additionally A # 0 (over F,) then in fact we have the stronger conclusion
that it generates
ind% , quot(a).
Suppose on the other hand that Cop = O(p) and A € Z;’. In that case we assume

that 2a — r > 0 and therefore the reduction modulo m of L represents a generator
of N,. n

Corollary 18. Let {C)}iez be any family of elements of Z,,. Suppose that
aef0,...,v—1}
and v € Q, and suppose that the constants
Di=[i=0]C1+[0<i(p—1) <r—2a] 37 Ci(;(,571)

are such that

v
v := min{v,(a) — a, v}

<
=
NS
g
>
N
Sy
3
=
IN
S
A
L

Suppose also that vp(a) € Z. Let
V= (1= p)""a(Ds) — Cy,
Ci=-Coi+ 3, G (5.

If % then x is trivial modulo .Z,, for each of the following pairs

(%, x) = (condition, representation).

vp(9) < min{v,(C_1),v} & v,(¥) < vy(a) — o, Kra).
v = 1v,(C_1) < min{v,(¥),v,(a) — a}, ind%, sub(a)).
vp(a) —a <v<vy(C) ECELY & Cy LY €2 —r >0, Na).

vp(a) —a < v <v,(Cy) 8C € Ly, ind% , quot(a)).
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(5) (vp(a) —a<v<(C) 80 ey, rg), where
ra
s a finite-codimensional submodule of
T(ind% , quot(a)).

(6) (vp(a) —a=v=20,(¢) <v,(C_y) §C ¢ Zy 6 Coely, r3) for

—1,q7

vy = (T+C(38) ~ S ) (indf auot (),

ap—«

where

A

C=lr =120 (-1 i GG () 1))

(7) (vp(a) —a=v=10,(C_1) <v,(0) & Co & LS €2a—1>0, r4> for
ry = (T + %) (ind$ , sub(a)).

(8) (Up(a) —a=v=1,(C_1) <0, () &C €L, indS, quot(a))

(9) (Up(a) —a=v=1,(C1) <v,(V) & Cy € Z), r5), where
rs
s a finite-codimensional submodule of

T(ind% , quot(a)).

Proof. (1,2, 3,4, 5) The proofs of these parts are nearly identical to the proofs of
the corresponding parts of corollary 17.

(6) The proof is similar to the proof of (5), the only difference being that the
valuation of ¥’ is the same as the valuation of the coefficient of H. To be more
specific, we divide v by Cp, the term “T” comes from the expression for H given in
lemma [16, the term “C/($°)” comes from

[r =p—1 20)(C5 "B - 1)(35),

the reason there is no term “A(%9)” is because A = C =0(p), and the term

“—=0 ,i ” comes from the first line of the formula for v given in (1)).
ap

(7) As in the previous parts we can deduce that .#, contains
I = Cg%(g(l)) °x73, ea(yr/ . xp—lyr’_p+1) +1 °x23, eayr/ LI,

where ' = r — a(p+ 1) and L’ reduces modulo m to a trivial element of sub(«).

The reduction modulo m of the element Y uer(Ul‘l )L generates ry.

(8,9) The proofs of these parts are similar to the proofs of (4, 5). n
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5. PROOF OF THEOREM 3

The proof of theorem 3| is based on the approach outlined in [BG09|, and roughly
consists of ﬁndmg enough elements in .%,, consequently eliminating enough sub-
quotients of deZ ¥,, and using that information to find Oy, a

Throughout this section we assume that
r—s+B(p— 1) +uop' +0(p )
for some 8 € {0,...,p— 1} and ug € Zy and t € Zxo. Let us wrlte n = uop’. Recall
also that we assume v — 1 < vp(a) < v for some v € {1,... , that
se{2v,...,p—2},
and that k& > p'% (and consequently r > p°?).

Let us first show the equivalence between theorem 3| and the union of the following
two propositions.

Proposition 19. If k € %’3 Y then any infinite-dimensional factor of O, is a
quotient of N,_1. Ifk e , then none of the infinite-dimensional factors of Ok.a
are quotients of a representatzon in the set

{NO’ s 5ﬁmax{u—t—1,ﬁ}—1} .

Proposition 20. Ifk € ;i then mone of the infinite-dimensional factors of O 4
are quotients of a representation in the set

{Nmax{u—t—1,6}+1a ceey Nu—l} .

Proof that theorem 3 is equivalent to propositions 19 + 20. First let us assume
that propositions 19/ and 20 are true. Together they imply that any infinite-
dimensional factor of @k « 18 a quotient of N,, where a =v —1if k € #Z;" and
a=max{vr—t—1 B} if k € Z7. The classifications given by theorem 2 in \|
and theorem 2.7.1 in 1mply that if @k « is reducible then it must have ex-
actly two inﬁnite—dimensmnal factors. There may be an additional one-dimensional
factor, a twist of the Steinberg representation. Suppose that the infinite-dimensional
factors are quotients of ind% ,(oy(0)) and ind% ,(o4(d")), respectively. By theo-

rem 2 in [Ars21] we must have
bV —d=,1d+1landb+d=,_1 —2.
In particular, ind% , (o4 (b)), ind% , (54(d")) cannot be ind% , sub(a), ind% , quot(c),
as that would imply that
20 —r=p_1 200 —r+ 1.

Similarly, the two representations cannot be two copies of indg zsub(a), as that
would imply that

20 =1 5+ 1,
a contradiction since 2a € {2,...,2v — 2} and s € {2v,...,p — 1}. And, the two
representations cannot be two copies of ind?( 2 quot(a), as that would imply that

200 =, 15— 1,
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which is similarly a contradiction. Thus we can conclude that ék,a must be ir-
reducible, and the classifications given by theorem 2 in and theorem 2.7.1
in imply that the only possible quotient of N, that Oy, , can be is Blrr(b,).
This implies theorem 3.

Conversely, if theorem 3| is true, then the fact that @k,a = Blrr(b,) implies that
Oy,,q is irreducible and not a quotient of a representation in the set
{NO, - Ny_l} \{N.}.

Proposition 19 is essentially the main result of [Ars21|. Let us now prove proposi-
tion 20.

Proof of proposition 20. Let o € {0,...,v — 2} and let us consider N,. The task is
to show that if a > max{r — ¢ — 1, 8} then none of the infinite-dimensional factors
of ©y , are quotients of V,. Note that the condition on « implies both a >  and

t>2v—a>uva) —a
Let us apply part (3)) of corollary 17 with v chosen arbitrarily in the open interval
(vp(a) — a, t) and
{ 0 ifje{-1,0},
a—j(s—a+l Y
(1) (25 +pC;ifje {1, al,

for some constants C7, ..., C% yet to be chosen. We need to show that the constants
{C;} are suitable, i.e. that the conditions of corollary [17 are satisfied. Clearly

C; =

vpla) —a <v < vp(Coq)
and Cy = O(p). Moreover,
YL O = S 0 ) ) + o)
— a(B « s—a+1
= (=1)*() + (1) (75T) + Olp)
= (~1)*H (72" + O(p).
The third equality follows from the fact that a > . Since
p+ta—1>s5>2a—2
for a > 0, and (s_zﬂ) =1 for a =0, it follows that
S G(TT) ez
Thus we only need to verify the most delicate condition, that
v < vp(Ju(De))
for 0 < w < 2v — a. By (c-a) and (c-g), if
. r—a-+j 1(p—1
Ly(r) =0 (i(p—l;r-ij-j)( (pw ))
then Li(r) = L1(s+ B(p — 1)) + O(n) for 0 < w < 2v — a. So in order to verify the
last condition it is enough to show that

(2)  La(s) = 0y ((F)° 9 (04 4905 ) (TAETH ) = 0(p")
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for alli e {1,...,3}. We have
(FZYT) = ()T + o).

‘We also have
S (=1 (N ()
= X (0 N ()
= () (=TI (T S (L) (YY)
= ()2 (<l =0T + (27) =0,

The second equality follows from Vandermonde’s convolution formula. The third
equality follows from the assumptions that i > 0 and o > . So (2) is true modulo p,
and we can transform (2) into the matrix equation

s+B(p—1)—a+j . AT -
(( i(p—1)+j ))1<i§5,1<j§a(017'”70a) —(’lU1,...7’w5>
for some wi, ..., wg € Zp. This matrix equation always has a solution since the left

B x B submatrix of the reduction modulo p of the matrix

<(s+ﬁ_<p—1>—q+a'))
i(p—1)+j 1<, 1<

is upper triangular with units on the diagonal. Therefore we can indeed always

choose the constants Cf, ..., C} in a way that v < v, (9w (D)) for 0 < w < 2v — a.
Then all conditions of part (3)) of corollary 17 are satisfied, which concludes the
proof of proposition 20. n

Propositions 19 and 20 are already sufficient to compute O.q, since they imply that
O, must be a quotient of N, where « = v — 1ifk € Z;" and o = max{v — t — 1, 3}
if k € Z5. Let us show that in fact the surjective map

Ny — Opq
factors through ind$ , quot(a).
Proposition 21. If k € Zy" then the surjective map
Nu—l — @k,a

factors through indf(z quot(v — 1).

Proof. Let o = v — 1. Note that since k € Z;" we have
ge{v—-1,....,p—1}.
Let us apply part (2)) of corollary |17 with v = 0 and some constants
C_1,Cy,...,C4

such that C_; = (g ) and Cy = 0. The conditions that need to be satisfied in order
for the corollary to be applicable are v, (9., (D,)) > 0 for 0 < w < «, and v, (9") > 0.
Let us consider the matrix A = (A ;)o<w,j<a that has integer entries

Aw,j = Zi>0 (i{p:OiYij) (“’Zl))
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Then v,(¢') > 0 is equivalent to ¥,(Ds) = C_1 + O(p) = (5) + O(p), so the two
equations we want to show are equivalent to

T
A(0,C4,...,Cy)T = (—(B),o,...,o, (5)) + O(p).
By (c-g) we have
Zu@j = Fw,j(r7 S)a

where Fy, ;(z,1) € Fp[z, 4] is the polynomial defined in lemma [12. Then the con-
clusion of that lemma is that

A(0,Cr, 0, Ca)T = (=(2),0,..,0, (g))T

with
_ i(s—a+1
C] - (_1)]( a—j )
for j € {1,...,a}. Thus these choices for C_y,Cy,...,C, are suitable, and we can
apply part (2) of corollary 17 with v = 0 and conclude that ind% , sub(a) is trivial
modulo .#,. n

Proposition 22. Ifk € %’El{ then the surjective map

ﬁmax{y—t—l,,@} — @k,a
factors through ind$%. , quot(max{v —t — 1, 5}).

Proof. Let o = max{v —t — 1, 8}. Let us apply part (2) of corollary |17|with v = ¢
and

C; = 0 ifj=0,
(-1t Ha (Y (Lot ifje {1, a}

We need to show that the constants {C;} are suitable, i.e. that the conditions
of corollary (17 are satisfied. Clearly v,(C_1) =t < vp(a) — . We also need to
show that ¢ < v,(F,(D.)) for 0 < w < o and t < v,(¥) and ¢t < vp(Fy(De)) for
a <w<2v—a. Let us consider the matrix A = (A, j)o<w,j<a that has integer
entries

Aw,j = Zi>0 (i(Tp_—Of)rij) (i(pq;l))'

If we consider the approximation claim in the proof of proposition 19 and multiply
the first column by p, we get

A=S4+nN + O(np),

where
Swg =Y (TS (0Y),
| +w—v— s —1)—« i O s —1)—a+j—v
Nuj = 30, (1) (FaZs ) (HPe- et T, (YRS )

, 1) —atin 9
—[w=0] (3+6(p jl) +J) )
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Exactly as in the proof of proposition 19 we can deduce the three conditions we
need to show as long as

S(Co,...,C)T =0,
N(Cy,...,Co)T = (—=C_1n74,0,...,0,C_1n~ )T + Sv + O(p) for some v.

Let B = B, be the (a+1) x (o + 1) matrix defined in lemma [8. That lemma
implies that B encodes precisely the row operations that transform S into a matrix

with zeros outside the rows indexed 1,..., 5 and such that
__[i=0](st+B(p—1)—a+j
(BS)w,; =p~ U= w((i;fl))Jrj ’)

when w € {1,...,3}. Moreover,
Biw = [(i;w) = (0,0)] + X7 (-1 () (1Z) + O(p)-
By using this formula we can compute that
«@ afoa\\ T
B(-1,0,...,0,1)T = (0,—(%),....(=1)*(%))" + O(p),

and therefore if R is the a x o matrix over F, obtained from BN by replacing
the rows indexed 1,..., 3 with the corresponding rows of BS and then discarding
the zeroth row and the zeroth column, the condition that needs to be satisfied is
equivalent to the claim that

55) «@ « a\\ T
(3)  R(Ci,....Co)T=(-(1=[1<8D(S),....(-D*A=[a<B)(2))" .
The matrix R is the lower right o x a submatrix of the matrix @ defined in the
proof of proposition 19, where we compute that

_ _ Ay ifie{1,...,8},
Ricrgor = (7370%9). { ) (( )

’(j )8 otherwise,
fori,5 € {1,...,a}. We have
SO (~)et Bt () (L) (e

9=1 B a—j j—i
= Zj(—l)o"w“a(agl) (S;Cf]rl) (04+5j*_5;271)
= (—1)atitia ("3 (70).

If i € {1,...,5} then the last expression is zero, and if i € {f+ 1,...,a} then it is

a— —B— (1— i o\ !
(~12a("5) (25 = DN = Ui - (<))
which implies (3). Consequently we can apply part (2) of corollary (17| with v = ¢
and conclude that ind%., sub(e) is trivial modulo .7,. "

6. PROOF OF THEOREM 4

The proof of theorem |4 is very similar to the proof of theorem [3. The major
difference is that we apply corollary 18 instead of corollary /17| since vp(a) is an
integer, which means that Oy, , is reducible in some cases.

We make the same assumptions as in section 5. We assume that

r=s+pB(p—1)+up’ +O0(p'™!)
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for some 3 € {0,...,p — 1} and ug € Z,’ and t € Z, that n = upp', that vp(a) =v — 1
for some v € {1,..., 5 1}, that s € {21/ .,p— 2}, and that k > ploO (and conse-
quently r > p?9).

Let p=XNif k € Zy" and pp = Agy if k € Zp (in the notation of theorem 2). Let
y=v-1 1fk€<%’sy and v = max{u—t—l B} if k€ %5 . Let us first show the
equivalence between theorem |4 and the following proposition.

Proposition 23. Let either k € %y, ork € 3] andt <v—f —1.
(1) (T — =) (ind% , quot(y — 1)) is trivial modulo .7,.
(2) (T — p)(ind$ , sub(y)) is trivial modulo .7,.
(3) ind$, sub(y — 1) is trivial modulo .7,.
(4) ind% , quot(v) is trivial modulo .7,.

Proof that theorem 4| is equivalent to proposition |25.  First let us assume that
proposition 23| is true. In the setting of theorem 3| proposmons 190 120, 21}, and 22
show that if k € %" then Oy, a is a quotient of ind% , quot(v — 1), and if k € U
then O , is a quotient of dez quot(max{v — ¢t — 1, 8}). Their proofs are based
on corollary 17, They amount to considering the element of im(T" — a) coming from
equation 1 in lemma 16, and noting that the term with dominant valuation is either
H or

(’19/ + C—l) .KZ,@p eaxpflyrfa(p+1)*p+1 + C—l .sz@p enxaf’nyrfnpfa7

depending on how t compares to v,(a) — . In the setting of theorem 4 we can
apply the analogous corollary /18 to conclude that any infinite-dimensional factor
of O , must be a quotient of one of

ind% , sub(y — 1), ind%, quot(y — 1), ind%, sub(y), ind% , quot(y),

where for convenience we define sub(—1) and quot(—1) to be the trivial represen-
tation. The key reason why the proofs of propositions [19 and 20| copy verbatim
to prove this is that outside of these subquotients the valuations ¢ and v,(a) — «
never match, so again exactly one of the two aforementioned terms is dominant.
The only subtlety when copying the proofs of propositions 19 and 20 is that we
do not know whether .7, contains 1 exzg, #*~'y"~**". This ultimately does not
present a problem since when working with Nu 1 we always assume that Cy = 0.
As the proofs of propositions 19| and [20 work here nearly without modification ex-
cept for replacing corollary 17 with 18, we omit the full details of the arguments.
Proposition 23/ then implies that any infinite-dimensional factor of O , must be a
quotient of one of

ind , quot(y — 1)/(T — p=?), ind%  sub(y)/(T — ),
and together with theorem 2 in [Ars21] they completely determine Oy ,.

The converse, that theorem 3 implies proposition 23, is clear since theorem 3| com-
pletely determines Oy . n

Proof of proposition 23.



22 BODAN ARSOVSKI

(1) Suppose first that k € Z;". Let ¢ = (c1,...,¢q) be as in lemma 10, and let us
make the substitutions X =r —aand ¥ = s — a. We apply part (6) of corollary 18
with v = 1. We choose C_1 =0 and Cy =1 and C; = ——2— for j € {1,...,a}. In
the proof of proposition |19 we show that for these constants we have

(s—7)y
V= (s— U+2)V1 1p + O(p2)’
1 < vp(Fy(Ds)) for a < w < 2v — a,

1 < vp(9y(D,s)) for 0 < w < a.
Moreover, since C, .. .,Cq = O(p) we have C' = O(p), and

(s—v+2),_1a _ a
K= (6—=7)y—1p" cytopr—2°

Therefore the conditions needed to apply part (6) of corollary 18 (i.e. the three
conditions

(S
v" := min{v,(a) — o, v} < v,(Y (D )) for a < w < 2v — a,
/
<

v < vp(Yy(D,)) for 0 < w < «,

in addition to the two extra conditions on €' and Cy in part (6) of the corollary)
are satisfied and we can conclude that

(T — p=1)(indf ; quot(y — 1))

is trivial modulo .Z,. If k € Z5 lt' and t < v —  — 1 then the argument is similar: we
choose v = t 4 1 and the same constants {C;} as in the third bullet point (if 8 = 0)
or the fourth bullet point (if 5 € {1,...,7 — 1}) of the proof of proposition 19. In
the former case

9§ = wp + O(pt“),

(s—a)a+t1
and in the latter case
¥ = €eQoop+ O(p'*?).
In both cases
b= ooty

and the conditions needed to apply part (6) of corollary |18 are satisfied, so again
we can conclude that

(T — =) (ind% ; quot(y — 1))

is trivial modulo .#,.

(2) Suppose first that k € Z5"”. We use the constants

()G ifg=-1,
C; = 0 ifj=0,
(1)) ifj e {1,...,al).

v—j—1

We can show just as in the proof of proposition 21| that these constants satisfy all
of the conditions needed to apply part (7) of corollary |18 with v = 0. Moreover, we
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have
=0 G () = () () +0)
= (DN G () - (0TI + O)
= (=1 (*,"1*) + O(p).
Thus

é 1—v _ (syu+2) _
- Z'p,l -G r);ufl =M

v—1

so part (7) of corollary 18/ implies that

(T — p)(ind% , sub(y))
is trivial modulo .7,. If k € #}/ and t <v — 3 — 1 then the argument is similar:
we choose v =t and the constants

n ity =-1,
()P (N (U0 e {1l )

as in the proof of proposition 22l Again all of the conditions needed to apply
part (7) of corollary 18 with v = ¢ are satisfied and

C= (D05 Sin (1 () (7)) + o)

Y=J J

:(71)ﬁ+v7(751) v (s—’Y-&Tl) (7_7-'_1)+O(p)

J=1\ =g J
= (-5 ((5) = (7)) +0
= ()P (5N (7)) + 0).
The last equality follows from the fact that ( T) O(p). Thus
(

Ca___ _ DR +1)
70_1py7t71 - epv— t

=,
so part (7) of corollary 18 implies that

(T — p)(indF 7 sub(v))

is trivial modulo .#,.

(3) This is very similar to part (2) of this proposition: if k € %Z;" then we use
part (2) of corollary 18| just as in the proof of proposition 21, and 1f ke %’S ’; and
t <v— [ —1 then we use part (2) of corollary 18 just as in the proof of propos1—
tion 22. We omit the full details.

(4) We apply part (8) of corollary 18 with the same constants as in the proof
of part (2) of this proposition—since C € Z,, all of the necessary conditions are
satisfied and we can conclude that ind$ Kz quot(7y) is trivial modulo 7. "
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