ON THE REDUCTIONS OF CERTAIN
TWO-DIMENSIONAL CRYSTALLINE
REPRESENTATIONS, III

BODAN ARSOVSKI

ABSTRACT. This technical article is a continuation of in which we
show the Breuil-Buzzard-Emerton conjecture over the “subtle” components
for slopes less than prl.

1. INTRODUCTION AND RESULTS

1.1. Background. Let p be an odd prime number and k£ > 2 be an integer, and let
a be an element of Z, such that v,(a) > 0. Let us denote v = |v,(a)| + 1 € Z=.
With this data one can associate a certain two-dimensional crystalline p-adic rep-
resentation Vi, , with Hodge—Tate weights (0,k — 1). We give the definition of this
representation in section 2 of [Ars21], and we define V. , as the semi-simplification
of the reduction modulo the maximal ideal m of Zp of a Galois stable Zp—lattice
in Vi, (with the resulting representation being independent of the choice of lat-
tice). The question of computing V, , has been studied extensively, and we refer
to the introduction of for a brief exposition of it. Partial results have been
obtained by Fontaine, Edixhoven, Breuil, Berger, Li, Zhu, Buzzard, Gee, Bhat-
tacharya, Ganguli, Ghate, et al (see [Berl0|, [Bre03a), [Bre03b, [Edi92], [BLZ04],
[BG15|, [BGO9], [BG13|, [GG15]). A conjecture of Breuil, Buzzard, and Emerton
says the following.

Conjecture A. Ifk is even and v,(a) ¢ Z then V4 is irreducible.

The main result of [Ars21| is that this conjecture is true over certain “non-subtle”
components of weight space. We say that a weight k belongs to a “non-subtle”
component of weight space if and only if

k#3,4,...,2v,2v+ 1 mod p — 1.

Thus there are maux{p—;1 — v+ 1,0} many “non-subtle” components of weight space.
This article is a continuation of in which we also show the conjecture for
the “subtle” components for slopes less than p%l. The main result we show is the
following theorem.

Theorem 1. Conjecture Al is true when the slope is less than 172;1‘
1
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2. COMPUTING V' , BY COMPUTING O,

From now on we assume the notation from sections 2, 3, 4, and 6 of ArsQlj.
Moreover, we assume that k > p'%° as in section 5 of . Theorem 2 in [Ars2]
implies that our main theorems can be rewritten in the following equivalent forms.
Recall that we assume p > 2 throughout.

Theorem 2. If k € 2Z and v,(a) € (0, 251 )\Z then Oy, is irreducible.

Thus our task is to prove theore 2.

3. COMBINATORICS

Throughout the proof we will refer to the combinatorial results in section 8 of [Ars21].
For convenience, we reproduce the statements here in the form we will use.

Lemma 3. Suppose throughout this lemma that

n,t,y € Z, b,d,k,l,w € Zxy, m,u,v € Zx.

(1) Ifu=vmod (p—1)p™~! then
(c-a) M, = M, mod p™.

(2) Suppose that w=t,(p—1)+ s, with s, =, so that s, € {1,...,p—1}
and t, € Zxo. Then

(c-b) M, =1+ [u=, 1 0]+ Lp+ O (tup?).
(3) If n <0 then

(c-¢) My, = Z;ﬁo(_l)i(_in)Mufnfi,&
(4) If n > 0 then

(c-d) Myn=0Q+[u=p_1n=p O])(Z) mod p.

(5) Ifuz (b+1)d and l > w then
(c-0) 0L (4) = w=1ld.
(6) If X is a formal variable then
(c-f) () () = S0 (TR O ()
Consequently, if b+1 > d+ w then
s Gy (70 )

(C_g) = Zv(i]‘)wiv (l+7111}1:11)1_1) (b_gH_l)Mb_d'H_”vl_”'
(7) We have

(c-i) ) = ey
(8) We have

(c-j) 2, R G = 0 ()
(9) We have

(c-k) Zj(_l)j (i) (jiw) = (-1 (l+§)}fb)'



REDUCTIONS OF CRYSTALLINE REPRESENTATIONS, III 3

Lemma 4. Let o € ZN [O P and let {D;}icz be a family of elements of Z,
such that D; =0 fori & [0 o) =0 for all0 < w < a. Then

Zi Dll.l(p 1)+a r—i(p—1)—a _ 0%h

for some polynomial h with integer coefficients.

Lemma 5. For a, A\, pu € Zxq let

be the (a + 1) x (a+ 1) matriz with entries
, & .
Lijy =Yoo fr (§)" 1L k)sa(k, 5),

where s1(l, k) are the Stirling numbers of the first kind and so(k, j) are the Stirling
numbers of the second kind. Then

Lo (0302 () = (059, 09)

Lemma 6. For o € Zx¢ let B, be the (a + 1) x (a + 1) matriz with entries

1+l+k

z]_]'Zkl 0 l ()(1_p)_k51(lak)82(k7j)7
where s1(i,7) and s2(k,j) are the Stirling numbers of the first and second kind,
respectively. Let {X; ;}i j>o0 be formal variables. For 8 € Zx¢ such that a > 3 let

S(a, B) = (S(aaﬁ)w,j)ogwd‘ga
be the (a+ 1) x (a+ 1) matriz with entries
S( ) _Zz lXaJ< pwl))
Then B, S(«, B) is zero outside the rows indexed 1,...,53 and
(BaS(a, B))ij = Xi
forie{l,...,5}.
Lemma 7. For u,v,c € Z let us define
—cf{w 0 Uu—w
Fuyv7c(X) :Zu)(_l)w (c)(iu() (X+ ) GQP[ }
Then 5 5
u X u X
Fuﬂ)ac(X) = (vfc)(c> - ('ufc) (c)
Lemma 8. Let X and Y denote formal variables, and let
¢ = (~1)al (X;{fl () + (;jj)) € Q[X,Y] C Q(X,Y)
be polynomials over Q of degrees  — j, for 1 < j < . Let
M = (My j)o<w,j<a
be the (a+ 1) X (o + 1) matriz over Q(X,Y) with entries
My = (—1)® Y =X)Xuw

Vi1
M,y = T, (-0 R ) () - ()
forO<w < aand0<j<a. Then the first « — 1 entries of

Mc= MYy, c1y.. ca)T = (doy ..., da)T

Y-X
are zero, and d, = (YA
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Lemma 9. Suppose that s, o, B € Z are such that
1<f<a<s-2< 52

Let B = B, denote the matriz defined in lemmal6. Let M denote the (o + 1) x (ac+ 1)
matric with entries in F), such that if i € {1,...,5} and j € {0,...,a} then

s—a— ) -1 7 apoe
Moy = (). ) g =o.
7 ’ ( j—i J) ifj >0,
and if i € {0,...,a}\{1,..., B8} and j € {0,...,a} then M, ; is the reduction mod-
ulo p of

p*[jZO] ZZ:O Biw ZU(_l)wfv (j+$:5—1) (erﬂ(P*Ul)faJrj)

B (s+Blp—1)—arti-
: Zu:O ( u(II))—l)—&-j—i U)

7]

1 — (ly—Li=0] (s+B(p—1)—a+i)?
[Z_O]Z) g ]( j )

. w (s —1)—«a w!
—[7 =01 00 Biw (=) (TP D7) (ot
Then there is a solution of
M(zo,...,20)" = (1,0,...,0)"

such that zy # 0.

Now let us prove some additional combinatorial results.

Lemma 10. Suppose that s, € Zx( are such that
s€{2,4,...,p—3} and 5 < a <s and a < 5=,

For w,j € Zxq let Fy, j(2) € Fy[2] denote the polynomial
w—v (jJrw—v=1\ (z—a+j\ (s—atj—v —a+j5) (0 —a+j) (z—s
Z, 0T eI - (7)) - CLE) GL)-
Let Cy(2),...,Ca(z) € Fplz] denote the polynomials

a —ls—2 T
(s—a—l) a+1 ij = 0’
CJ(Z) = (—1)7 rs—a—1 o
J+1 ( a—j J(z—a) ifje{l,....a}.
Let Fi(z), Fy(z) € Fplz] denote the polynomials
Fi(2) = 2520 C(2) Fu i (2),
Fy(z) = ~[w = 0](";33").
Note that all of these polynomials depend on s and o. Then Fy(z) = Fy(z).

Proof. Let us first show that
(1) Co(2) (779) + 0, Cy(2) (o) = =),

S—x S—« S—«

Since

_ R
Co(2)((28) = (—ao) s = (ot
this is equivalent to

«@ —ls—z (z—a— a —1)9 (a—j s—a z—a+j
(sfocfl) a+1 (sfafi) + Zj:l %(afjjtl)( sf;rj) = (_1)04-"-1.
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The polynomial on the left side has degree at most s — a. The coefficient of z°~¢

in it is 77(2‘(3‘015;3!1)! plus
1 (=1)7F rs—a—1y _ (=1t X s—20+j— s—a—
(s—a—1)! Zj j+1 ( a—j ) - (s—a-1)! E j+1 [ 2atd 1](1 + X) !

—1)7+1 —S— S—o—
:Zj ((le)d) [XJ]XQQ 1(1+X) !

= e o YR YAy

(=1)°(2a— s+1)‘

- (a+1)!
Since s is even, that coefficient is zero. Therefore it is enough to show that the two
polynomials are equal when evaluated at z € {a+1,...,s}. At these points the

polynomial on the left side is equal to
1) s—a— s—a— j
(s —a) Zj ( le)rjl ( a—j 1)( sfzﬂ)
for v € {0,...,s —a —1}. We have
j+1 o N . s—at+j+1
Z ( jl—i)-l (saij 1) (6 ?_;Y'f']) Z (DT(S Oéaj 1) ('ys ]al)
s—atitl o .
( ) (I)T( a—j 1) (s—{x—lu)
s—ati oo o
( )Z (sl)(x u ( a—jl) (s—aj—u2—1)
utl s—a— —s+a+u
- Eu (s 1(31 u (u) Z] ( a—jl)( j+—&-2+ )
ut1 —— _1yet+l
- Zu (s 1(34 u (u) (oﬂré) = ( slza :
The third equality follows from (u) =0 for u > s—a—1, and the last equality

follows from (eré) =0forue{l,...,s—a—1}. In particular, (1) is indeed true.

So both Fj(z) and Fy(z) have degree at most a + 1, and therefore they are equal
if they are equal when evaluated at

ze{s+y(p—-1)|7€{0,...,a+1}}.
It is easy to verify that Fi(s) = F5(s), and when
ze{s+y(p—-1)|ve{l,....,a+1}}
the fact that
S T () = Fus(s + - 1)
(due to (c-g)) implies that the equation Fy (s + v(p — 1)) = Fa(s + v(p — 1)) is equiv-
alent to
im0 Cils +9(0 = 1) L () ) (0,)) = ~lw =0 (7).
Note that (_7(53)_1) = (7 1) =0 and therefore the right side vanishes. Let

a+1
us reiterate that all computations done in this proof are over F,. Let us write

C] = Cj(s+7(p—1)). The desired identity
s+ 1)—a+ (p—1
Z] ocﬂ{ i ( Zgﬁ 134—3 ])( (pw )) =0
follows if 1)
v (s+ 1)—a+j) _
Za OC ( Z(g 1)+j ])_0
forallie {1,...,v—1}. Ifj >0 and C} # 0 then

22a0—-—s+12a+v—s
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and consequently

(MCa3) ifs—a—v+i>0

{ (111) (pi:f;z—’:il) fs—a—-y+i<0
(e,

(F10) = ) ()

i(p—1) i—1/) \s—a—vy+i/"

(F )

On the other hand,

Since
(i5) =3(0) eF;
(as that 0 <i <y < a+ 1), what we want to show is that
C’Yz(sa'y) ZJ 1C’y(sa"/+])_0

0y \s—a—vy+i s—a—~y+i
for alli € {1,...,7 — 1}. That is equivalent to
FS(S +7(p - 1)) = 07
where F3(z) € Fp[2] is defined as
a —ls—z—w z—a—1 —1)it (s—a—w) (s—a—1)\ [ z—a+]
F3(Z) = (s—a—l) a+1 (s—(x—w—l) + Z?:l ( ) j-(|-1 )( a—j )(s—a—i})
with w =7 —4 > 0. The degree of F5(z) is at most s — o —w, and in fact the

coefficient of 257%~% in it is — (S_a_l()awfi)oi_sﬂ)! plus

1)+ rs—a—1 (s—a—1), (2a—s+1)!
(s—a—w—1)! Z ]+1 ( a—j ) (a+1)! ’
i.e. the coefficient of 2°~*~™ in it is zero. Therefore the degree of F3(z) is less than
s —a —w, so it is enough to show that F3(z) is equal to zero when evaluated at

zef{fa+1,...,s —w}

At these points F3(z) is equal to
—1)7t! s—a— s—a— j
(S - w) Zj ( le)rl ( a—j 1)( sfoz;y;:j)
for v € {w,...,s —a—1}. We have
—1)* s—a— s—o— j )° ati—wtl g a— —j—w—
Zj ( jl—&)-l ( a—j 1)( s—aj;:]) Z (17( a—j 1) (’ysja—wl)
_ _qys—ati—wHl o i
= Zu ( u ) Zj (I)T( a—j 1) (s—oz]—ul—w)
—w ) A 7 e —j—
= Z (V ) Z %( a—j 1) (s—a—z—%u—l)
utl —w S—a— —STOoTUTW
_Zus ozl)u w(’yu )Zj(afjl)( Jrj«ijL )
wtl —w ut+w—
_Zu s5— al)u w(’yu )Zj( —gz+21) =0.
The last equality follows from ( N ) =0 for
ueg{0,...,s —a—w-—1}.
This proves that indeed F5(z) = 0 and therefore that Fy(z) = Fa(z). "

Lemma 11. Suppose that o € Z>g. For w,j € {0,...,a} let
Fw,j('zaw) € Fp[sz]

denote the polynomial

Zy(_l)w_v (j+zizfl) (zsz*j) ((Ibfffj*”) . (zf?zjgfv)) )
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Note that this depends on . Then

Y (—1) T (VLT P (2,9) = (=1)%([w = o] — [w = 0]) (V7).

Proof. Both sides of the equation we want to prove have degree o and the
coefficient of z* on each side is &; ([w = a] — [w = 0]). So the two sides are equal
if they are equal when evaluated at the points (z,1) such that

(z,9) e{lu+v(p—-1)+a,u+a)|ue{0,...,at,vy€{0,...,a—1}}.
The right side is zero when evaluated at these points, and

Fuj(uta(p—1)+au+a) =S, (V@00 (000)

by (c-g). Thus we want to show that
S (DT () S (1) (00 ) = o)
for 0 < u,w < aand 0 < v < «a. Since
(L) = Q)5 () + 00

i(p=1)+j w /A g-i

that is equivalent to
Zi,j>0(*1)a+W7i (Z:) ) (7_?1_1) (") = Ol).
This follows from the facts that
Yis0 (57557 = G5
for ¢ > 0 by Vandermonde’s convolution formula, and
D)= () =0

since v € {0,...,a — 1}. "
Lemma 12. Suppose that s, a, 8 € Z are such that

s€4{2,4,....p—3fanda=5=35+1.

Let M denote the (oo + 1) x (o + 1) matriz with entries in F,, defined in lemma 14,
Suppose that Cy, . ..,Cq € Iy are defined as

Cj = (1) +1a(973).

Then
M(CO,...,CQ)T = (O,...,O,I)T.

Proof. The equation associated with the ith row of M is straightforward if
i ¢ {0,a}. Since My ; is equal to

Smo (D) O (T o = 28 =)

e M Ca [
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and since

J(J 2)3(1 1) 1

a— «@ o
(] (0 =)0 = -1,

Zl ’*C“(2 DOy =1,

) a=

Zl (- )Ha( a) (2) (a22) = _¥’

the equation associated with the zeroth row is
v i—2\9 ratj—v—
S (=17 (525) oo GO AZ) (LD = -4
and it follows from the fact that
Zl o( ) ()(i 5) = (_1)j (jii)

for 0 < v € j < a. This shows the equation associated with the zeroth row. Since
M, ; is equal to

. 2] . i_o\0 i _1\O
F=2()" + = alFaaole—2) = (J25) - (D22 (L)
the equation associated with the ath row is
a+1

) e\ (2D 10D N
(@) =22 ED) = () — () Fawola —2) + 5—,
and it follows from the facts that
_1\0
Foola—2)=Fyao(-1)=(-1)(})
and that the polynomial (a)fz)a € F,[X] has degree less than o — 2 (and is zero if
a = 2) and therefore

S =
This shows the equation associated with the ath row and concludes the proof. =
Lemma 13. Suppose that s,«, f € Z are such that
s€{2,4,....p-3Yanda=5+1and B {5, 5 +1}.
Let Ay denote the 8 x B matriz with entries in Q, defined as

— (pli=11-li<B—a+1] (s+B(p—1)—atj )
b <p (6045 )iz assea

Then Ao has entries in Z, and is invertible over Z,.

Proof. Tt is easy to verify that Ag is integral, since if j > 1 then
s—a—pF+j=20
and therefore

(S+B_(p*1)fo'z+j) — (/3) (sfogfl?ﬂ') +0(p) = O(p)

i(p—1)+j i j—i
for i < 8 — a+ 1. Let us show that Ay is invertible (over Z,) by showing that Ay is
invertible (over F,). Suppose first that 8 = oo — 1 and denote the columns of Ay by
Ca,...,Cq. The bottom left (o — 3) x (o — 3) submatrix of Ay is upper triangular
with units on the diagonal. Moreover, since

S =GN = S0P (P =,
ST G =D CED () =X, G =0 () (9) =o,
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all but the top two entries of each of the vectors
a1 = (“T7)Cama + - 4+ (=1)°73 (325 e,
Ca — (agl)ca—Z +- (71)0‘73(& - 3) (Z:E)CQ

are zero. Thus it is enough to show that the 2 x 2 matrix consisting of those four
entries is invertible (over F,). This 2 x 2 matrix is

€0,0 €0,1
((—1)‘36 (—1)‘*5(5—1))
with

co0 =B 00 (—1V (TN (P57 = i GRE (Y
= X5 () = ()T
o

o = By (191G = 1) (%) (,751,)" = o, L eu=n (5

N8 (DTG (A1) (=D 1E?
—ijo( )ﬁ+1(j )(63' )_( /§+1 ’

so it has determinant % € F;'. Now suppose that 3 = a and denote the columns
of Ag by c1,...,¢4. The bottom left (o — 1) x (o« — 1) submatrix of Ay is upper
triangular with units on the diagonal, all but the top entry of the vector

Co — (QIQ)Ca—l + -+ (71)0472 (z:g)CQ

are zero, and that top entry is
d

B (P () = 5 GHE () = (-1 e By

Therefore Ay is invertible. [

Lemma 14. Suppose that s, a, 8 € Z are such that
5€4{2,4,...,p—3}and 3 <a<sandl1 <P <

Let M denote the (o + 1) x (o + 1) matriz with entries inF,, such that ifi € {1,...,8 — 1}

and j €{0,...,a} then

Miy = (im0 )

and if i € {0,...,a\{1,...,8—1} and j € {0,...,a} then

Mig = 325 (=D () (70 (707 (75)
i =0] (sfoz;ﬁJrJ) _li=g] (sfzz:ipr]—)a

s—a— N
— ()T S (T
Suppose that Co, ...,Co € F), are defined as

{ 1 ifj=0,

C] = i+1 .

(=)’ (s—a=8) a+l o
%(MJS“) (j+1) if7e€{l,...,a}
Then

T
_ [ D s—a)(a=B+1) [ @
M(Co,Cr,...,Co) = < altes (s_a),o,...,o> .
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Proof. Let us denote the rows of M by
ro,...,rq.
Note that if j > 0 and C; # 0 then j > 2a¢ — 5, 50 s — @ + j > o and in particular

() = (o).

We have the following string of equations:
P01 (50 20) (510) 025
() 220 (=D (0 7 ) (51 (00
() (G200 Xmo (D71 (1) (5200
L) (D (L) + S, (D () (L)
(D) (0 () + fu = 0/(-1)*+)
= ((2) - (€7D).
The first two equalities amount to rewriting the binomial coefficients. The third
equality amounts to computing the inner sum. The fourth equality follows from (c-€).

The fifth equality amounts to computing the outer sum. This string of equations
implies that

X5 G5 (71 = (1R (1)),
Our task is to compute r;(Co, C1,...,Cy)T fori € {0,...,a}.
e Computing ro(Co, C1,...,Cu)T. If j > 2a. — 5 then
Sio(-D' ()6 = (17
for 0 < v < j < a and therefore
Mo; =3 0_o(=1)7"(}) (S_a56+j)a(s_?+i_v)
_ (sfoz]fﬁﬂ')a (e 5+g) S (lf 71)
(T S (Y
The second equality follows from the fact that (;f) =0 if v < j. We also have
Moo = S0 oD (70) (797 ()
— () S, (8’
= S (DT () (7 ()
S i D3 G
= Y o= 1)t () (S‘i‘ﬁ>3<sfa)
+ (500 Do (-1 (e (e )

2]

15}

(*22,7)-
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The third equality follows from lemma 7. Thus ro(Cp,...,Cqs)7T is equal to
oD () (20 () + =52 D (95)
= (1220 (79T (O (1) + =5 ()
= (o) + =52 ) o0 (e e
S (o) +=572(2))

= Fl)"“’“(s—a)(a—ﬁﬂ)( )
52(2a73+1)(g) s—a/’

The third equality follows from lemma 7. Thus we have computed

T _ (=DM (s—a)(a=B+1) [ «
I'()(Co, R Ca) - ,82(2a—s+1)(°5) (sfa)'

o Computing r;(Co,C1,...,Co)T forie{1,...,8—1}. Let w € Z be such that
i=f—-—we{l,...,8—1}. Then

—1) T (s—a— j « s—a— j
Zj>0 M (2ajs+1) (]jr_ll) ( S*OLE’:’)_J)
a— —1) (s—a— i [} s—2a+j—
- Z ( 6+1) Zj)o %ﬁﬁ) (204js+1) (jjr_ll) (57(21;’1_571})
oa— a—w—u —1)7 (s—a— j @
- Z ( ﬁ+1) (s a— w+71) ZJ>O — E} 2 (afwjfu%»l) (]jr_ll)
— ( l)a w—u S— a s—a—f Z (a B—H) (a—w—u+1)

S—a—w—u

et ()
= sma=f(sma=f-1) _ _i(smo=h)

- B s—a—w B\s—a—w/"
The third equality follows from (c-€). Consequently, if ¢ € {1,...,8 — 1} then
ri(007 ey Ca)T =0.

o Computing r;(Co,C1,...,Cu)T fori e {B,...,a}. For these i we have

0= Xh oD () () (79 ()
=8 - (D) S (O Y
and for j > 2a — s we also have
§ = S (DI () () (o) (et )
—[i= AT = () S, (O (5
The identity
z;%‘:()(fl)j“ (3t ) (GED (Homat9)”
2 (5o o 2 (D () )
:‘(6“a1><@%2»

= (e’
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is true over Q,[z]. By evaluating at z = —f we get
s—a— ,BJr _ s—a—pB (s—a—pB—1 0
EJ IC ( j) - T( s—a ) ’
and consequently
s—a—p0 0 a s—a—LB+j 0 _ s—a—f3—-1
( s—a ) + Zj:l CJ( s—a J) - %( s—a—1 )
This means that (—1)**8r;(Cy,...,C,)7 is equal to ®(—3), with
D(z) = (a0 = 5)P1(2) — Pa(2) + (2 + 5 — a)(P1(2) + P3(2) + Py(2))

(2) = X omo CDFT O () CTI7 (70),s
Dy(z) = (s—zal—1) (Z:ﬂll)’
®3(2) = 327 o (C D L) D D G2 CTL ) (75T,

a(2) = (70) Zito () ) = CLIGED Y
So we want to show that ®(—/3) = 0. If s = a + 3 then this equation amounts to
B (=P) + ®2(=p) = 0,

z

z

and indeed

B (~8) = BYS 0< DO )00
_Zlv =0 i ﬁ(i) (ﬂ) (liz)
= Yo DM (57D ()
= Yo ([ = 0)(=1)P 4 1= B)(-1)) ()
= (-1°())
=[i=pl(-

1)P
= (50 (37 = —22(-8)
-1\ i-1 :
Now suppose that s # a+ . As in the proof of lemma |7 we can simplify ®4(z)
to

O1(2) = — (100 e (O (L)

We can also simplify ®3(z) to
®3(2) = X5 =0~ D (50 70 ) (F1) () (T2 ) (C75107)
= (“Tl) Z;‘Xzo(_l)aHH (2a—js+1) (?ﬁ) (ZJFS]‘:?H)'

Suppose first that ¢ > 3. Then

4 (=8) = = i () (5237 (7220 + (327 (5520°),
Py (—f) =0,

(=) = (T4 Doy () (2 ) () (o8,
(=A) = (T () (7Y



REDUCTIONS OF CRYSTALLINE REPRESENTATIONS, III 13

Thus if s > « + 5 then the equation ®(—f3) = 0 is equivalent to
Li(s,a,8,1) = Ri(s,a, B, 1)
with
Lii= Y00 (540) (T50) (L22500),
Ry = (539) E5mo (=0 (00 2i) (51) (7520)
+ () (e ) (62D
Let us in fact show that
Li(u,v,w,t) = Ry (u,v,w,t)
for all u,v,w, ¢ > 0. We clearly have
Li(u,0,w,t) = Ry(u,0,w,t)
since both sides are zero, and
Ri(u+1,v+1,w,t) — Ri(u,v,w,t)
— Li(u+ 1,0+ 1,w,t) + Li(u,v,w,t)
= () w5 Zimo (1" (2 2 CT) (7520)
- (Zl’i) (2vv—zl+2) (Zilfj—rll)
+ w5 () (emoZam) (220
All we need to show is that this is zero for all u,v,w,t > 0, which follows from
25 (-1 (o 2ud) () G220
= Zj,e(_l)j (u—Z:Zili—e) (2v—]ﬁ+1) (Uerl) (u_%eﬂ_l)
= 305 (17 (T e) Godied) (5D G0
= 3, (—1)ret( vowhl Y (u=v—e=2 (vl )(2v—utetl

u—v—w+t—e/ \j+u—2v—e—1/ \v—75+1 e
ZZ(—l)“+e+1( v—w+1 )(ufvfefl>(2v7u+e+l)
e

u—v—w-+tt—e u—v—e e

(2) = (=1)UH () ().

t—w u—v

Similarly, if s < o + 8 then the equation ®(—4) = 0 is equivalent to
Lo(s,a, B,1) = Ra(s, e, B,1)
with
Ly := Zza:6+1 (sia) (éigj)v
B = S0 ) GED O + () ()
Let us in fact show that
Lo(u,v,w,t) = Ro(u,v,w,t)
forallu>v>t>w>0. It is easy to verify that

Lo(u,t,w,t) = Ro(u,t,w,t),
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and
RQ(’LL —+ 171} + 1, 'LU,t) - RQ(u,v,w,t)
— Ly(u+ 1,04 1,w,t) + Lo(u, v, w,t)
 u—w v v j v+1\ (u—v—w+j
= 2o—ut2 ]:0(71) + (ZU—Ju+1)( 7 )( Jj—t J)

(D) - (TS,

2v—u+2 \u— t—w u—v—1/ \u—v—w+t

which is zero by (2). Finally, suppose that i = 5. Then

(=8) = = 2o () (5230 (7270 + (3229 (7270 7).

©o(—p) = (-1 (71,

D(=B) = T5oo(= 1™ (o 1) () (757597 =TI ha)),
®)(=5) = (1P (31)) (ha-s — hy),

where hy =1+ --- + 2 is the harmonic number for t € Z~o and hy = 0 for ¢t € Zg.
Since

o (D), 2L ) (5 (RZeT)
=0T - )
we can simplify ®4(—0) to
o a j a a—s—1\9 a
The equation ®(—/) = 0 is therefore equivalent to

L3(S,OZ7ﬂ) = R3(87 «, B)
with

Ry := (s — a = B)(5(—p) + 4 (—B)) — P2(—H).
Let us show that Ls(u,v,w) = R3(u,v,w) for all u > v > w > 0. For v = w this
is
0 (2 Gula) = (20 (02)”) = Qo= w) () + (250),
WA \y—w 2w—u u—w/) \2w—u, W= U)oy Mw u—w—1
If w > 2w then both sides are zero, if u = 2w then both sides are 1, and if

2w > u > w then both sides are w(hw 1+ ). Thus all we need to do is
show that

2wu

Rs(u+1,v+ 1,w) — R3(u,v,w) — Lg(u+ 1,v 4+ 1,w) + L3(u,v,w) =0
for all w > v > w > 0. By using the equation
i j v+1\ (zH+u—v—w+75\ __ v v+1\ [z+v—w+1
Zj(_l)J (2v—ju+1)( 7 )( j—w j) - (_1) i (u—v)( v—w+1 )

we can get rid of the sum y and, after some simple algebraic manipulations,
simplify this to

v U—v—w 6 v—w uU—v—w v—w 8 — w1 uU—v—w v
(ED (22 Gomm) + () i) = S (1)
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We omit the full tedious details and just mention that since we are able to get

rid of the sums ), and ) ; the aforementioned algebraic manipulations amount
to simple cancellations. If u > v 4+ w then

v u—v—w\9( v—w u—v—w v—w \9
Ca (276 + (U 65)°)
(=) D) (v—w)! (u—v—w) ! (w—1)!
T wl(v—w+)!(2v—ut+1)(u—v—w—1)(u—v)!

(="M u—v—w)(v+1)! (=) T (u—v—w) (v—}—l)
T whv—w+1)(u—v)!(2v—u+1)! T w(v—w+1) u—v/?
and if w < v +w then

v+1 U—v—w 2] v—w U—v—w v—w 2]

CED (2 Gom) + (0 o))
_ (=1 (v+)N (w—D)!(v+w—u)! (v—w)!
T wl(v—w+)(u—v)(v+w—u—1)(2v—u+1)!
(=) u—v—w)(v+1)! (=) T (u—v—w) (v+1)
T whv—w+1)(u—v)!(2v—u+1)! T w(v—w—+1) u—v/"

We have finally shown that if i € {8,...,a} then

I‘i(CO, . .,CQ)T =0.

4. COMPUTING Oy 4

Throughout the proof we use the results from section 9 of [Ars21|, which we repro-
duce here without proofs for convenience.

Lemma 15. Suppose that a € {0,...,v —1}.
(1) We have
(T _ a) (1 .KZ,@P anmocfnyrfnpfa)
= Zj(*l)j (?)pj(pfl)ﬂv( S )exza gIP—Dtayr—ip—1)—a
— azj(—l)j(";“) °x23, g 7 (P=Dyr—ip=1)=alp+1) 1 O(p™).
e submodule im(T — a) C in S, contains
(2) The submodule im(T — a) C ind%, %
B r—pB+1 —  i(p— r—i(p—1)—
S (S i) ) exzg, oD Hoyr-it-n =8
+ O(apPrve 4 ppt)
or all 0 < B8 < v <v and all families {Cy}1cz of elements of Z,, where
forall0 < B d all families {C f el f Zy, wh
ve = ming<i<p(vp(Cr) +1).

The O(ap=P+vc + pP~1) term is equal to O(pP~"') plus

a

B _ _ - o
PT 1=~ Cip! 20z uer, M) (50) exzg, Ona? Tty AL
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Lemma 16. Suppose that o € Z and v € Q are such that

a€ {O v —1},
p(Ja(De)),
v" := min{v,(a) — a v} Up(Uy(Da)) for a <w < 2v — a,
v < vp(Dy(Da)) for 0 < w < a

If, for j € Z,
Aji= (—1)I1(1 = )= (%, )Va (D),
then v < vp(Va(A)) < vp(A;) for all j € Z, and
> (A — Dy) exz g, i teyr=ip=l)—a
=[a< s](—l)"‘HD;%i ok zq, ORIy e
—Doexzg, 0"x* "y T
+Eexzg, oth + F ez, ' + ERR1 + ERRo,
for some ERRy and ERRsy such that
ERR; € im(7 — a) and ERRy = O(p¥~v»(@Hv 4 pr=a),

/

some polynomials h and h', and some E, F € @p such that vy, (E) = v andv,(F) > v'.

Lemma 17. Let {C)}iez be any family of elements of Z,,. Suppose that € {0, ..., v — 1}

and v € Q, and suppose that the constants
D;:=[i=01C_1+[0<i(p—1)<r—2a]>;,C (i(p:al‘)'il)

satisfy the conditions of lemma |16, i.e.

v < vp(Ja(De)),
v = min{v,(a) — a, v} < vy(V(Ds)) for a < w < 2v — a,
v < vy (9y(Ds)) for 0 < w < a.
Moreover, suppose that Cy is a unit. Let
¥ i=(1—p) % (Ds) — C_1.
Suppose that v,(C_1) = vp(V').

1) If v,(v v then there is some element gen, € ., that represents a gen-
P 1
erator of N

(2) If vy(a) — o < v then there is some element gen, € %, that represents a
generator of a finite-codimensional submodule of

T (indgz quot(a)) =T (ﬁa/ ind% , sub(a)) ,

where T denotes the endomorphism of ind%z quot(a) corresponding to the
double coset of (19).

Let us now prove the following additional results.
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Lemma 18. Let {C;}iez be any family of elements of Z,,. Suppose that o € Z and
v € Q and the constants
Di=[i=0]C1+[0<i(p—1) <r—2a] 37 Ci(,(,5T1)
are such that
a€ {O yv—1},
p(Ja(De)),
v" := min{v,(a) — a v} < vp(ﬁw(D.)) 0<w<a.
Let
¥ i=(1—p) % (Ds) — C_1.

Then im(T — a) contains

(9 +C_4) °x23, gogp—lyr—alp+—p+l L o, °x 27, grgo—nyr—np—a
3) + Eeadn Be ok, 0he + Foxzg, W + H
for some he, W', Ee, F, H such that

(1) Ee = V(D) + O(p*) U O(da1(Da)) U -+~ U O(de_1(Da)),

(2) if €+ o — s < 26 — s # 0 then the reduction modulo m of 05he generates N,

(8) v,(F) > v, and

(4) H = O(p”_”f’(a)“’ +p"~%) and if v,(a) — a < v then
1_}sz =g .sz@p onxafnyrfnpfa + O(pufvp(a))

ap
with
9="2er, Co( D)+ A(BY) + [r =p-12a)B(50),
where
A=—Ca+X,0( ¢
and

B=%1,C(20)-

Proof. This lemma is essentially shown under a stronger hypothesis as lemma |17,

The stronger hypothesis consists of the three extra conditions that v, (¢, (Ds)) > min{v,(a) — a, v}
for all @ < w < 2v — @, that Cy € Z;5, and that v,(C_1) > v,(¥'). These extra con-

ditions are not used in the actual construction of the element in (3), rather they

are there to ensure that v,(E¢) > min{vy(a) — a, v} for all a < < 2v — «, that

the coefficient of (?3) in g is invertible, and that we get an integral element once

we divide the element

(19/ + C—l) °x23, gazpflyrfa(prl)prrl +C_, °x23, e U

by ¥’. Therefore we still get the existence of the element in (3)) without these extra
conditions, and to complete the proof of lemma |18 we need to verify the properties
of he, B¢, F,H, A, and B claimed in (1), (2), (3), and (4). The h¢ and E¢ come
from the proof of lemma 16, and E¢ °x23, thg is

Xeokzg, Z)\;&o[_)‘]r—a_&(é [ )(—=O)rar TP E ST
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with the notation for X¢ from the proof of lemma [16. Let F¢ = (—1)5*1X,. Then
condition (1)) is satisfied directly from the definition of X¢. Let

h5 — (_1)£+1 Z)\;éo[_/\]r—a—g( 1[A] )(_Q)nxr—np—fyf—n_

01

This reduces modulo m to the element

(~1)8 Sl NS BV R = (—1)met) (22 ) XSassygoa

of

0—2577"(7" - 5) = r—2¢ (g)/UT*QE(g) = quOt(f)
This element is non-trivial and generates N¢ if { + a — s < 2§ — s # 0, since then
XE&tazsyEe—a generates Ne. This verifies condition (2). Condition (3) follows from
the assumption v/ < v, (0, (D,)) for 0 < w < @, as in the proof of lemma 16. Fi-

nally, condition (4) follows from the description of the error term in lemma 15, as
in the proof of lemma [17. L]

Corollary 19. Let {C;}iez be any family of elements of Z,,. Suppose thata € {0,...,v — 1}
and v € Q, and suppose that the constants

Di:=[i=0]C1 +[0 <i(p—1) <r—2a] 7L Ci(;(,571)

are such that

v
v" := minf{v,(a) — o, v}

<
=
>
S
>
N
Sy
3
o
N
g
A
R

Suppose also that vy(a) ¢ Z. Let
¥ i=(1—p) *P(Ds) — C_1,
Ci=-Coi+ 3, G (5.
If x then * is trivial modulo #,, for each of the following pairs
(%, x) = (condition, representation).
(1) (0p(#") < minfu,(C1), 0}, Na).
(2) (v=1v,(C_1) <min{v,(¢¥),v,(a) — a}, ind%, sub(a)).

3

~
=

(4

—

(vp(a)—a@@p(c_l) §CelLr 6CogTX &2a—r>0, ﬁa).
(vp(a) —a<v<,(Cy) §Cc zy, ind% , quot(a)).

(5) (vpla) —a <v < (Coy) & Cy € Zy, rl), where
ry
s a finite-codimensional submodule of

T(ind% , quot(a)).
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Proof. There is one extra condition imposed in addition to the conditions from
lemma [18: that
v" :=min{vp(a) — a, v} < vp(Yy(Ds)) for a < w < 2v — a,

and it ensures that v,(E¢) > ¢’ for all @ < § < 2v — a. Lemma 18 implies that the
element in (3)) is in im(7 — a). Let us call this element .

(1) The condition v,(¢') < min{v,(C_1),v"} ensures that if we divide v by ¥’ then
the resulting element reduces modulo m to a representative of a generator of N,.

(2) The condition v = v,(C_1) < min{v,(¥),vp(a) — a} ensures that if we divide
~v by C_; then the resulting element reduces modulo m to a representative of a
generator of ind%. , sub(a).

(3, 4, |5) The condition v,(a) —a < v < v,(C_1) ensures that the term with the
dominant valuation in (3) is H, so we can divide vy by ap~® and obtain the element
L+ O(p”*”P(“)), where L is defined by

Li= (Sace, Cols ) + A +[r =1 20IB(33)) exz, 0mat "y "0

with A and B as in lemma [18. This element L is in im(7 — a), and it reduces
modulo m to a representative of

(Ser, Co(301) + A + [ =po1 20(~1)7*B(52)) w5, X2

As shown in the proof of lemma 17, if Cy € Z,; then this element always generates
a finite-codimensional submodule of

T(indf(z quot(a)),

and if additionally A # 0 (over F,) then in fact we have the stronger conclusion
that it generates

ind%, quot(a).
Suppose on the other hand that Cop = O(p) and A € Z. In that case we assume

that 2a —r > 0 and therefore the reduction modulo m of L represents a generator
of N,. [

5. PROOF OF THEOREM 2

We prove theorem 2 by proving nine propositions which give just enough informa-
tion to conclude that © , is irreducible, but not enough to classify it fully.

We assume that

r=s+pB(p—1)+up'+0(p™)
for some 8 € {0,...,p—1} and ug € Zy and t € Zxo, and we write n = uop’. As
the main result of implies theorem 2| for s > 2v, we may assume that

se{2,...,2v—2}.

Recall also that we assume v — 1 < v,(a) < v for some v € {1,..., 251}, and that
k > p'% (and consequently r > p%9).

We now give a list of nine propositions, and show that their union implies theorem [2.
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Proposition 20. If a < 5 then
N, ifBef0,...,a—1} and o > vp(a) — t,
{ ind% , sub(a) otherwise
is trivial modulo Z,.
Proposition 21. If ; <a <sand f ¢ {1,...,a+ 1} then
N
is trivial modulo .Z,.
Proposition 22. If0 < a < 5 then
T(ind% , quot()) if B €{0,...,a} and a > v,(a) —t,
Ns_o if€A0,...,a} and a < vy(a) —t,
N, ifpe{a+1,...,s—a},
Ns_o ifB>s—a
is trivial modulo .Z,.
Proposition 23. If § < a <s and (o, 8) # (5,5 + 1) then
T(ind%. , quot(c

(@) ifpe{l,....,s—a}and s —a>vy(a) —t,
T(ind$ , quot(a

) ifpe{s—a+l,...,a} and a > vy(a) —t,

N, otherwise

)
)

is trivial modulo Z,.
Proposition 24. If a > s then
T(ind% , quot(a)) if a = max{v —t — 1,5 — 1},
{ Na otherwise
is trivial modulo Z,.

Proposition 25. If e {1,...,5 =1} andt > v — 5 —2 then

Ns/2+1

is trivial modulo #,.

Proposition 26. If 5 € {1,...,5 —1} andt = v — 5 then
Ns/271
1s trivial modulo Z,.

Proposition 27. If € {5,5+ 1} andt > v — 5 — 1 then
J/\\Ts/2+1
1s trivial modulo .Z,.
Proposition 28. If 3 =35+ 1andt=v — 5 —1 then
ind%, sub(§ + 1)

is trivial modulo .Z,.
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Proof that propositions 20-28 imply theorem 2. Let us assume that ék,a is reducible
with the goal of reaching a contradiction. The classification given by theorem 2

in [Ars21] implies that O , has two infinite-dimensional factors, each of which is a
quotient of a representation in the set

{ind% , sub(a) |0 < & < v} U {ind% , quot(a) |0 < o < v/},

and moreover that the following classification is true.

(1) If the two representations are ind$ , sub(ay) and ind$ , sub(as) then
o) +az =p_1 s+ 1.
(2) If the two representations are ind%, sub(ay) and ind% , quot(as) then
o — oy =, L
(3) If the two representations are ind%, quot(ay) and ind$ , quot(as) then

o) +az =p_15—1.

The facts that
a1 +as €{0,...,2v —2} C{0,...,p— 3},
o~ €{l—v,...,v—1} C{-22 .. 223}
se{2,...,20-2)C{2,....p—3}

imply that the following classification is true as well.

(1) If the two representations are ind% , sub(ay) and ind% , sub(az) then
o] oy =s+ 1.
(2) If the two representations are ind%, sub(ay) and ind% , quot(as) then
a; = ag + 1.
(3) If the two representations are ind% , quot(ay) and ind% , quot(a) then

o] +ay =s—1.

This classification and propositions [20, [21, |22, 23], and 24| together imply that one
of the two representations must be either ind% , sub(3) or ind%, quot(3), and in
that case the other representation is either

ind%, sub(§ + 1)

(which can only happen if € {1,...,5 =1} andt>v -3 or B € {5,5 +1} and
t>v—35—2)or
ind% , quot(§ — 1)

(which can only happen if s =2 or g € {1,...,5 — 1} and t = v — 3). In the latter
case if s = 2 then either 1 exzg, 2%y > € .7, generates ind% , quot(0), or v < 2
in which case Vi, is known to be irreducible. Propositions 23, 25, 26, 27, and 28
exclude all of the remaining possibilities. Thus if we assume that Oy, is reducible
we reach a contradiction, so Oy , must be irreducible. u
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Proof of proposition 20. First suppose that 8 > a. We apply part (2) of corol-
lary 19 with v = 0 and

(—D)*(*27) ifj =1,
Cj = 0 ifj=0,
(=D () ifiefl,.. al
Since

(*.") =€) +0() ez,

«
the two conditions we need to verify are v, (¥, (D, )) > 0for 0 < w < cwand v,(¢') > 0.
These two conditions are equivalent to the system of equations

S (=1 (L) S () ()
(4) = (~1)*([w = a] — [w=0))(*]") + O(p)

for 0 < w < a. Let F, j(2,1) € [z, 1] denote the polynomial defined in lemma 11.
Since

— i i(p—1
2i0 (i{p—oi-)i_—ij) (z(pw )) = Fy,;(r,s)
by (c-g), the conclusion of that lemma when evaluated at z =r and ¥ = s im-

plies (4). Thus if 8 > « then we can apply part (2) of corollary |19 and conclude
that ind% , sub(a) is trivial modulo .7,.

Suppose now that 8 € {0,...,a—1}. If ¢t > vy(a) — « then the proof of theorem
17 in [Ars21] applies here nearly verbatim since

(5 a+1) c Z><

and in fact we can conclude that Na is trivial modulo .#,. So let us suppose that
t < vp(a) — a. We apply part (2) of corollary 19 with v = ¢ and

(~1)("7) ifg=-
Cj = 0 ifj=0,
(—1)%](9&““) +pC; ifje{l,...,a},

for some constants C7,...,C% yet to be chosen. Clearly

vp(Cq) =t < vp(a) — a,

and the other conditions that need to be satisfied in order for corollary 19 to be
applicable are

t< 1}1,(19’)7
Up (Y (De)) for o
(D

<w<2U—a,
t<vp(19w o)) for 0 < w < a.

Let us consider the matrix A = (A, j)ogw,j<o that has integer entries
_ r—a+j i(p—1
Aw,j - ZO<i(p71)<7‘f2a (i(p—l)ij)( (pw ))'
Then exactly as in the proof of theorem 17 in [Ars21| we can show that
A=S+eN + O(ep),
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where
Sws =i (TR ) (),
j+w—v— s —1)—« i o s —1)—a+j—v
Nuj = S, (=D =0 (raze ) (e D) T (T )

D)ot @
—[w=0] (s+ﬁ(p jl) +J) )

We still have equation 4| since the constants are the same, and since

(*2") =0,
we have
S(Co, ceey COt)T = (O(p)a ceey O(p))T

Let B = B, be the (a+ 1) X (o + 1) matrix defined in lemma |6l That lemma
implies that B encodes precisely the row operations that transform S into a matrix

with zeros outside the rows indexed 1,..., 3 and such that
_ —[i=0] (stB(p—1)—a+j
(BS)uy =p B0 (e o)

when w € {1,...,}. We thus have
BS(Co,...,Cq)T = (0,0(p),...,0(p),0,...)7,

where the only entries of the vector on the right that can possibly be non-zero are the
ones indexed 1,..., 3. As in the proof of theorem 17 in we note that S has
rank 3 and therefore we can choose Cf, ..., C* in a way that (Cp, ..., Cy)T € ker BS.
Then 9,,(Ds) = O(e) for all w, and the conditions that need to be satisfied are
Y (De) = O(ep) for 0 < w < a and ¥ = O(ep). These two conditions are equiva-
lent to the single equation

A(Cy,...,C)T = (=C_1,0,...,0,0_1) + O(ep),
which is itself equivalent to
BN(Co,...,C)"
= (0, = ()(C_re™),. .., (=1)%(2)(C_1e™1)) " + BSv + O(p)

for some v. Thus, if R is the o X a matrix over F,, obtained from BN by replacing
the rows indexed 1,..., 3 with the corresponding rows of BS and then discarding
the zeroth row and the zeroth column, the condition that needs to be satisfied is
equivalent to the claim that

(- =<8, (-D)*(1 = [a < BD(Z))T

is in the image of R (since Cyp = O(p) and C_1e~" € Z)). This is indeed the case
since R is the lower right a x a submatrix of the matrix @ defined in the proof of
theorem 17 in [Ars21] (where it is shown that @ is equal to the matrix M from
lemma (9)) and is therefore upper triangular with units on the diagonal. Thus we
can apply part (2) of corollary 19 with v = ¢ and conclude that ind$, sub(a) is
trivial modulo .Z,. (]
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Proof of proposition |21. Let us define C_1(2),...,Cq(2) € Zp[z] as
(2 ifj=-1,

a+1
I
Ci(z) = (cact) a7t if5=0,
Z1)F e e
(jl_il ( a_jl)(zfa) ifje{1,...,a}.

We apply part (1) of corollary 19 with v = 0 and
(C_l, Co, ceey Ca) = (C’_l(r), Co(?“), ey Ca(r)).

The two conditions we need to verify are v, (9, (D,)) > 0for 0 < w < a and v, (¥') = 0.
These two conditions follow from the system of equations

(5) 250 Ci ocitr-ny<r—2a (it 15) (%) = 0 = 0)("17") + O)
for 0 < w < . Let F, j(2) € Fp[z] denote the polynomial
E 0TI T) = CTE) ) - Gt CL)
By (C_g)a
20<i(p71)<r72a (i(rpioi;_ij) (1(;;1)) = Fu;(r),

so the conclusion of lemma 10 evaluated at z = r implies (5). Thus we can apply
part (1) of corollary 19 and conclude that N, is trivial modulo .. n

Proof of proposition |22.  First let us assume that g € {0,...,a}. If we attempt
to copy the proof of theorem 17 in [Ars21| in this setting, the one place where we
run into problems is that some entries of the extended associated matrix N are
not integers (i.e. when we extend the number of rows in A, S, and N to 2v — «
by defining A, j, Sw,;, and N, ; with the same equations used for the first oo + 1
rows, we get entries which are not integers). To be more specific, the equation for
Ny,o in this setting is

8 — ——w
PNy = (s+6(p*1)*a) Zi>0 (s+5(p 1) ) +0(p),

w i(p—1)—w
where the second term is O(p) because it is still true that
r—oa—w +8(p—1)—a— o
2i>0 (i(pfl)fw) — s 155—13—3) ") = O(ep).
On the other hand,

s+B(p—1)—a—w\ __ w w s+pB(p—1)—a—I
Siso (TR Za ) = ilo(-1'(7) Xiso (H 1T

= (=1)°7(,%,) + O(p).

So Ay,0 = Sw, + O(e) is integral if w < s —a and

Ao = Swo+ (=17, (757) e~ + O(¢)

S—x w
if w>s— a. Note that 5 € {0,...,a} and s > 2a by assumption, so Sy, o is still

always integral, and if s — a < w < 2v — « then

(o) = T g

w w(gf;jﬂ)
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What this means is that if we proceed with the proof of theorem 17 in [Ars21] and
apply lemma |18 with the constants (C_1,Cy,...,Cy) constructed there such that
Cy is a unit, then we obtain an element

(0 +C) sicng, 0907 Ly WD L O ey oy
+ o Eeogzg, 05he + Foxzg, W + H
which is in im(7T — a) and is such that
vp(C1) = vp(V) =t + 1,
vp(Ee) >2t+1fora+1<E<s—q,
vp(F) >t+1,

and with H as in lemma 18. However, v,(Es_o) =t and v,(E¢) >t for £ > s — a.
Therefore if ¢t > v,(a) — a then the dominant term is H and we can conclude that
a submodule of finite codimension in T(ind% , quot(a)) is trivial modulo .7,, and
if t < wvp(a) — o then the dominant term is

Esfa .KZ,@p 087ahsfa
and hence ]/\75,,1 is trivial modulo .#, by part (2) of lemma [18.

Now let us assume that 5 > «. We use the constants constructed in the second
bullet point of the proof of theorem 17 in [Ars21], and we apply lemma 18. This
gives an element

oy Y1) eaxp—lyr—a(p+l)—p+1
+ Y8 Be ok, 05he + F oz, W+ H

which is in im(7T — a) and is such that

vp(9") =1,

vp(Ee) Z1lfora+1<{<s—a,

vp(F) > 1,

Up(Es—a) = vp((r — a)s—a),

and with H as in lemma [18. This time the dominant term is either

o K70 gaxpflyrfa(zﬁl)*zwl
1=p

or
Es o .KZ,@p Hs_ahs—a

depending on whether 3 € {a+1,...,s —a} or > s — . Thus in the former case

N, is trivial modulo .#,, and in the latter case Ns_, is trivial modulo .#,. n

Proof of proposition|23. By proposition 21| we may assume that 5 & {1,...,a + 1},
and by proposition 22 we may assume that § # a4+ 1. If a # Jand B € {1,...,5s — a}
and s — a < vp(a) — t then the claim follows from proposition [22. Thus it is enough
to show that if 8 € {1,...,a} then

T(ind% , quot(a)) if a > v,(a) — t,
N, ifa<wvy(a)—t
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is trivial modulo .#,. If o <wp(a) —t we apply part (1) of corollary 19, and if
a > vp(a) —t) we apply part (5) of corollary |19. In both cases we choose v =t and

(—1)Q+B(5—0¢)(a—3+1)( a )6 if j = —1,

B2(2a—s+1)(3) s—a
C; = 1 ifj=0,
—l)j+1 s—a—pf i +1 e
%(MLH) ((;H) if j€{l,...,a}.

Since v,(C_1) =t and Cy = 1, the conditions we need to verify in order to be able
to apply corollary 19 are

t < vp(Yw(D,)) for a
t < vp(Yw(D,)) for 0
¥ =—C_1 + O(ep).

w <2V —a,

NN

w < a,

Let us consider the matrix
A= (Auw,j)ow,j<a
that has integer entries

Aw,j = ZO<i(p—l)<7‘—2a (i(p:liYij) (i(plll))

Then the second and third conditions are equivalent to the claim that
A(Co,...,Co)" = (—=C1 + O(ep), O(ep), ..., O(ep)) " .

As in the proof of the approximation claim in the proof of the main result of [Ars21]
(and as in proposition 20) we can show that

A=S+eN + O(ep),

where
S = Yimy (TREZNIT) (0 Y) = (e (),
j+w—v— s —1)—« N s —1)—a+j—v
Nuj = Sy (1) (T () =), (T )

9] 7]

— (T - D"
The first condition follows from an argument similar to the one in the fourth bullet
point in the proof of theorem 17 in : if we extend the number of rows in
A, S, and N to 2v — « by defining A j, Sw,j, and N, ; with the same equations
used for the first oo + 1 rows, then we have A = S mod € and so we can replace A
with S + O(¢), and 9., (D.) for each oo < w < 2v — a is a Zyp-linear combination of
Y0(Ds) = O(€),...,9a(Ds) = O(€). And, as in the proof of theorem 17 in [Ars21],
the second and third conditions follow if

S(COa"'vca)T :Ov
N(Cy,...,Co)T = (=Cre71,0,... ,O)T + Sv + O(p) for some v.

~ [t = 0] (~+P-D =0

Let B = B, be the (a+ 1) x (o + 1) matrix defined in lemma |6l Then BS has
zeros outside of the rows indexed 1,...,3 — 1, and

— (sHBp=l)—a+j
(BS)i.; _( 1(5—1)4-]' ])
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fori e {1,...,8—1}. Let R denote the (a + 1) x (a + 1) matrix over F, obtained
from BN by replacing the rows indexed 1,...,3 — 1 with the corresponding rows
of BS. As in the proof of theorem 17 in |Ars21l] we can compute

(BN)ij = Situco(—1 () (20 (7, 299) (757)
Z _ O (s a— ﬂ+g) [Z _B](sfaﬁ@”rj)a

S—«

— (DAY S () (Y

Thus lemma 14 implies that

T
R T _ (DT s—a)(a—f+D) ( «
R(CO701,...,C(1) - < ﬂ2(2o¢—s+1)(g) (S_a),(),...,()) .

So the conditions we need to apply corollary [19 are indeed satisfied, and that
completes the proof. n

Proof of proposition 24. This is the first time that we consider an « such that
a > s. The major difference in this scenario is that s is not the “correct” remainder
of r to work with and instead we should consider the number that is congruent to
r mod p — 1 and belongs to the set a4+ 1,...,p —a — 1. Let us therefore define
So =T —a+ «, and in particular let us note that s, =s for s > a (which has
hitherto always been the case). Then the computations in the proof of theorem 17
in work out exactly the same if we replace every instance of s with s, (and
the restricted sum “3_, " with “} o, 1)<,_,” when s = p —1). The sufficient
condition for these computations to work is

(3-a) €25,

2u—a
which is indeed the case since s, —a=p—1+4+s—a >2v —a. So there is an
analogous version of theorem 17 in [Ars21], and we can conclude the desired result—
as the proof of theorem 17 in works nearly without modification, we omit
the full details of the arguments. L]

Proof of proposition|25. Let us write a = ‘; + 1 and, as the claim we want to prove
is vacuous for s = 2, let us assume that s > 4 and in particular a > 3. We apply
part (3) of corollary 19| with v chosen in the open interval (v,(a) — o, t) and

0 ifje{-1,0},
{ (D7 (7 + (1) e =2)(527) +0C; ifje{l,...,a},

for some constants C7,...,C% yet to be chosen. The conditions necessary for the

lemma to be applicable are satisfied if C' = > Cj (T ati )€ Z, and
Y (D) = O(e)

C; =

for 0 < w < 2v — a. We have

C=3,C(°.2.74) + 0(p)

=13, ((C17 () + (0 a =2 (57) (5°27) + Ol)
=-1+0(p) €Z,;
by (c-€) since &« —2 > s — a — . And, since
J<s—a—-B+j<s—pB<p—i,
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we also have

RN = () () + o).

Thus the equality 9,,(De) = O(p) follows from the fact that
j (=2 (s—a—[F+7F) _
07 (55) (2825 =0,
which follows from (c-¢) sincea —2 >a—2—+1i=s—a— +i. Moreover, we
can choose

* *
Ci,...,Cx

in a way that ¢,,(Ds) = 0 for 0 < w < 2v — « similarly as in the proof of theorem
17 in [Ars21] since the reduction modulo p of the matrix
s+B(p—1)—a+j — [ (B (s—a—B+j
(( i(p—1)+j ))1<i7j<ﬁ = ((1)( j—i ) +O(p))1<i7j<ﬁ
is upper triangular with units on the diagonal. Thus the conditions we need to
apply corollary 19 are satisfied and we can conclude that N5, is trivial modulo

Fa. n

Proof of proposition |26.  Let us write a = § — 1 and, as the claim we want to
prove is vacuous for s = 2, let us assume that s > 4 and in particular o > 3. The
only obstruction in the proof of proposition 22 that prevents us from concluding
that N, o_; is trivial modulo .%, is that the dominant terms are

E¢ oz, 0°he
for 5 <& < 2v — 5 rather than H. We can see from proposition 25| that
Es/o11 k23, 05/t hg o1 = 21 + 22,
with v,(21) > ¢t + 1, and with o € im(T — a). Since the valuation of the coefficient
of H is less than ¢t + 1, we can remove the obstruction coming from
Es/2+1 *KZ,Q, 98/2+1hs/2+1

by replacing it with x1. If s = 2v — 2 then this is the only obstruction and we can
conclude that Ng/p_ is trivial modulo .#,. Now suppose that s < 2v — 2. Then
just as in the proof of theorem 17 in [Ars21] we can apply part (1) of corollary 19
and conclude that N, is trivial modulo .#, as long as (¢,0,...,0)7 is in the image
of the matrix A = (A j)ogw,j<o that has integer entries

r—a-+j (p—1
Awj =250 (i(pfl)ij)( (pw )) = Suw,j + eNuw,; + O(ep)
with S and N as in proposition 20. However, this time we can deduce more than

that: since s < 2v — 2 it follows that

s/241,r—s/2—1

lexzg, Yy

is equal to
g1 ‘KZ,@F 05/2+1xs/27n+1yrfnpfs/271 + 23

for some g1 with v,(g1) = vp(a) — 5 — 1 and some x3 € im(7" — a). This in turn by
proposition 25| is equal to

g2 0Kz, 07/* hy + 14
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for some gy with v,(g2) > t, some hq, and some x4 € im(T — a). Here we use the
fact that the valuation of the constant C; from proposition 25/ is at least one and
therefore the corresponding term H is

g2 .sz@p 05/2+1xs/27n+1yr7npfs/271 + a5+ 0(6)

for some g3 with v,(g3) = vp(a) — 5 — 1 and some x5 € im(T' — a). In general the
error term would be

Clapfs/2g4 .sz@p 95/2x5/27nyr7np75/2 + O(E)

rather than O(e)—a description of this error term is given in part (2) of lemma |15/
This implies that we can add a constant multiple of

s/241,r—s/2—1

lexzg, Y

to the element
ZZ_ -Di .KZ,@p xi(p—l)-‘rayr—i(p—l)—a + O(ap—(x)

from the proof of lemma [17, and we can translate this back to adding the extra

column
(.. 0)"

to A. As in proposition 20 we can then reduce showing that (e,0,...,0)7 is in the
image of A to showing that
(1,0,...,0)T
is in the image of the (o + 1) X (o + 2) matrix R which is obtained from the matrix
@ defined in the proof of theorem 17 in [Ars21] by replacing all entries in the first
row with zeros (because this time we do not divide the corresponding row of A
by p) and by adding an extra column corresponding to the extra column of A.
Thus, if we index the extra column to be the zeroth column, the lower right a x «
submatrix of R is upper triangular with units on the diagonal, the first column of
R is identically zero, and all entries of the first row of R except for Ry o are zero.
As when computing (BN); ; in proposition 23| we can find that
- 1-p—1\9
Roo=31"0( p; ) =¥ (-5-1)

with

O(2) = X (51) = (121
Thus 5

— - _B o (71)[34—1

Roo=(",") = gy 7O
which implies that (1,0,...,0)7 is in the image of R. Thus ‘the conditions we need
to apply corollary |19 are satisfied and we can conclude that Ny /,_; is trivial modulo

Sy L]

Proof of proposition 27.  Let us write a = § + 1. The reason why the proof of
proposition 25 does not work for 8 € {a — 1, a} is because C' = O(p) for the con-
structed constants C;. However, since t > v,(a) — 5, if Ce pZ,, then the dominant
term coming from lemma 18 is

H = by (52) ez, 072"y "% +0(p~+1)

for the constant
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which has valuation v,(a) —a+1. As in proposition 26| it is crucial here that
C1 = O(p). Just as in the proof of proposition 25 we can reduce the claim we want
to show to proving that there exist constants C1,...,Cq € Zy, such that C; = O(p)
and

<(S+B(p71)fa+j (C1,...,C)T = (p,0,...,0)7.

i(p=1)+j ))o<i<5,o<j<a
Therefore it is enough to show that the square matrix

_ ([ li=1]-[i<B—a+1] (s+B(p—1)—a+j )
Ao (p ( i(p—1)+j )0<i<ﬁ7a7ﬁ<j<a

has integer entries and is invertible (over Z,), as then we can recover
Cy=0and (Cy,...,C0)T = A1 (1,0,...,0)T ifB=a—1,
(C1/p,...,Ca)T = A5 (1,0,...,0)7 if B=a.
This follows from lemma 13| So the conditions we need to apply corollary 19 are

satisfied and we can conclude that ]\Afs /241 1s trivial modulo .7,. n

Proof of proposition |28.  Let us write a = 5 + 1. This time the proofs of both
parts (25) and (27) break down since C' = O(p) and the dominant term is no longer
H. Let us slightly tweak these constants and instead use

(—D)%e if j = -1,
(=D Ha(92)) ifje{0,...,a}.
Let R be the matrix constructed in proposition 23, Then just as in the proof of

proposition 25 we can show that C' = O(p), and just as in the proof of proposition 20
we can show that the dominant term coming from equation (3) in lemma 18 is

(19/ + C,l) *k 23, anp_lyr_a(l)""l)—P"rl +C_4 °x23, g g —nyr—np—o
(and therefore that ind%, sub(§ + 1) is trivial modulo .%,) as long as
R(Co,...,C)T =(0,...,0,1)T.

This follows from lemma |12, Thus the conditions we need to apply corollary |19|are
satisfied and we can conclude that ind%., sub(§ 4+ 1) is trivial modulo .%,. n

C; =
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