

ON THE REDUCTIONS OF CERTAIN TWO-DIMENSIONAL CRYSTALLINE REPRESENTATIONS, III

BODAN ARSOVSKI

ABSTRACT. This technical article is a continuation of [Ars21] in which we show the Breuil–Buzzard–Emerton conjecture over the “subtle” components for slopes less than $\frac{p-1}{2}$.

1. INTRODUCTION AND RESULTS

1.1. Background. Let p be an odd prime number and $k \geq 2$ be an integer, and let a be an element of $\overline{\mathbb{Z}}_p$ such that $v_p(a) > 0$. Let us denote $\nu = \lfloor v_p(a) \rfloor + 1 \in \mathbb{Z}_{>0}$. With this data one can associate a certain two-dimensional crystalline p -adic representation $V_{k,a}$ with Hodge–Tate weights $(0, k-1)$. We give the definition of this representation in section 2 of [Ars21], and we define $\overline{V}_{k,a}$ as the semi-simplification of the reduction modulo the maximal ideal \mathfrak{m} of $\overline{\mathbb{Z}}_p$ of a Galois stable $\overline{\mathbb{Z}}_p$ -lattice in $V_{k,a}$ (with the resulting representation being independent of the choice of lattice). The question of computing $\overline{V}_{k,a}$ has been studied extensively, and we refer to the introduction of [Ars21] for a brief exposition of it. Partial results have been obtained by Fontaine, Edixhoven, Breuil, Berger, Li, Zhu, Buzzard, Gee, Bhattacharya, Ganguli, Ghate, et al (see [Ber10], [Bre03a], [Bre03b], [Edi92], [BLZ04], [BG15], [BG09], [BG13], [GG15]). A conjecture of Breuil, Buzzard, and Emerton says the following.

Conjecture A. *If k is even and $v_p(a) \notin \mathbb{Z}$ then $\overline{V}_{k,a}$ is irreducible.*

The main result of [Ars21] is that this conjecture is true over certain “non-subtle” components of weight space. We say that a weight k belongs to a “non-subtle” component of weight space if and only if

$$k \not\equiv 3, 4, \dots, 2\nu, 2\nu + 1 \pmod{p-1}.$$

Thus there are $\max\{\frac{p-1}{2} - \nu + 1, 0\}$ many “non-subtle” components of weight space. This article is a continuation of [Ars21] in which we also show the conjecture for the “subtle” components for slopes less than $\frac{p-1}{2}$. The main result we show is the following theorem.

Theorem 1. *Conjecture A is true when the slope is less than $\frac{p-1}{2}$.*

2. COMPUTING $\bar{V}_{k,a}$ BY COMPUTING $\bar{\Theta}_{k,a}$

From now on we assume the notation from sections 2, 3, 4, and 6 of [Ars21]. Moreover, we assume that $k > p^{100}$ as in section 5 of [Ars21]. Theorem 2 in [Ars21] implies that our main theorems can be rewritten in the following equivalent forms. Recall that we assume $p > 2$ throughout.

Theorem 2. *If $k \in 2\mathbb{Z}$ and $v_p(a) \in (0, \frac{p-1}{2}) \setminus \mathbb{Z}$ then $\bar{\Theta}_{k,a}$ is irreducible.*

Thus our task is to prove theorem 2.

3. COMBINATORICS

Throughout the proof we will refer to the combinatorial results in section 8 of [Ars21]. For convenience, we reproduce the statements here in the form we will use.

Lemma 3. *Suppose throughout this lemma that*

$$n, t, y \in \mathbb{Z}, \quad b, d, k, l, w \in \mathbb{Z}_{\geq 0}, \quad m, u, v \in \mathbb{Z}_{\geq 1}.$$

(1) *If $u \equiv v \pmod{(p-1)p^{m-1}}$ then*

$$(c-a) \quad M_{u,n} \equiv M_{v,n} \pmod{p^m}.$$

(2) *Suppose that $u = t_u(p-1) + s_u$ with $s_u = \bar{u}$, so that $s_u \in \{1, \dots, p-1\}$ and $t_u \in \mathbb{Z}_{\geq 0}$. Then*

$$(c-b) \quad M_u = 1 + [u \equiv_{p-1} 0] + \frac{t_u}{s_u} p + O(t_u p^2).$$

(3) *If $n \leq 0$ then*

$$(c-c) \quad M_{u,n} = \sum_{i=0}^{-n} (-1)^i \binom{-n}{i} M_{u-n-i,0}.$$

(4) *If $n \geq 0$ then*

$$(c-d) \quad M_{u,n} \equiv (1 + [u \equiv_{p-1} n \equiv_{p-1} 0]) \binom{\bar{u}}{n} \pmod{p}.$$

(5) *If $u \geq (b+l)d$ and $l \geq w$ then*

$$(c-e) \quad \sum_j (-1)^{j-b} \binom{l}{j-b} \binom{u-dj}{w} = [w = l] d^l.$$

(6) *If X is a formal variable then*

$$(c-f) \quad \binom{X}{t+l} \binom{t}{w} = \sum_v (-1)^{w-v} \binom{l+w-v-1}{w-v} \binom{X}{v} \binom{X-v}{t+l-v}.$$

Consequently, if $b+l \geq d+w$ then

$$(c-g) \quad \begin{aligned} & \sum_i \binom{b-d+l}{i(p-1)+l} \binom{i(p-1)}{w} \\ & = \sum_v (-1)^{w-v} \binom{l+w-v-1}{w-v} \binom{b-d+l}{v} M_{b-d+l-v, l-v}. \end{aligned}$$

(7) *We have*

$$(c-i) \quad \sum_j (-1)^j \binom{y}{j} \binom{y+l-j}{w-j} = (-1)^w \binom{w-l-1}{w}.$$

(8) *We have*

$$(c-j) \quad \sum_j \binom{u-1}{j-1} \binom{-l}{j-w} = (-1)^{u-w} \binom{l-w}{u-w}.$$

(9) *We have*

$$(c-k) \quad \sum_j (-1)^j \binom{j}{b} \binom{l}{j-w} = (-1)^{l+w} \binom{w}{l+w-b}.$$

Lemma 4. Let $\alpha \in \mathbb{Z} \cap [0, \dots, \frac{r}{p+1}]$ and let $\{D_i\}_{i \in \mathbb{Z}}$ be a family of elements of \mathbb{Z}_p such that $D_i = 0$ for $i \notin [0, \frac{r-\alpha}{p-1}]$ and $\vartheta_w(D_\bullet) = 0$ for all $0 \leq w < \alpha$. Then

$$\sum_i D_i x^{i(p-1)+\alpha} y^{r-i(p-1)-\alpha} = \theta^\alpha h$$

for some polynomial h with integer coefficients.

Lemma 5. For $\alpha, \lambda, \mu \in \mathbb{Z}_{\geq 0}$ let

$$L_\alpha(\lambda, \mu)$$

be the $(\alpha+1) \times (\alpha+1)$ matrix with entries

$$L_{l,j} = \sum_{k=0}^{\alpha} \frac{j!}{l!} \left(\frac{\mu}{\lambda}\right)^k s_1(l, k) s_2(k, j),$$

where $s_1(l, k)$ are the Stirling numbers of the first kind and $s_2(k, j)$ are the Stirling numbers of the second kind. Then

$$L_\alpha(\lambda, \mu) \left(\binom{\lambda X}{0}, \dots, \binom{\lambda X}{\alpha} \right)^T = \left(\binom{\mu X}{0}, \dots, \binom{\mu X}{\alpha} \right)^T.$$

Lemma 6. For $\alpha \in \mathbb{Z}_{\geq 0}$ let B_α be the $(\alpha+1) \times (\alpha+1)$ matrix with entries

$$B_{i,j} = j! \sum_{k,l=0}^{\alpha} \frac{(-1)^{i+l+k}}{l!} \binom{l}{i} (1-p)^{-k} s_1(l, k) s_2(k, j),$$

where $s_1(i, j)$ and $s_2(k, j)$ are the Stirling numbers of the first and second kind, respectively. Let $\{X_{i,j}\}_{i,j \geq 0}$ be formal variables. For $\beta \in \mathbb{Z}_{\geq 0}$ such that $\alpha \geq \beta$ let

$$S(\alpha, \beta) = (S(\alpha, \beta)_{w,j})_{0 \leq w, j \leq \alpha}$$

be the $(\alpha+1) \times (\alpha+1)$ matrix with entries

$$S(\alpha, \beta)_{w,j} = \sum_{i=1}^{\beta} X_{i,j} \binom{i(p-1)}{w}.$$

Then $B_\alpha S(\alpha, \beta)$ is zero outside the rows indexed $1, \dots, \beta$ and

$$(B_\alpha S(\alpha, \beta))_{i,j} = X_{i,j}$$

for $i \in \{1, \dots, \beta\}$.

Lemma 7. For $u, v, c \in \mathbb{Z}$ let us define

$$F_{u,v,c}(X) = \sum_w (-1)^{w-c} \binom{w}{c} \binom{X}{w}^{\partial} \binom{X+u-w}{v-w} \in \mathbb{Q}_p[X].$$

Then

$$F_{u,v,c}(X) = \binom{u}{v-c} \binom{X}{c}^{\partial} - \binom{u}{v-c} \binom{X}{c}^{\partial}.$$

Lemma 8. Let X and Y denote formal variables, and let

$$c_j = (-1)^j \alpha! \left(\binom{X+j+1}{j+1} \binom{Y}{\alpha-j-1} + \binom{Y}{\alpha-j} \right) \in \mathbb{Q}[X, Y] \subset \mathbb{Q}(X, Y)$$

be polynomials over \mathbb{Q} of degrees $\alpha - j$, for $1 \leq j \leq \alpha$. Let

$$M = (M_{w,j})_{0 \leq w, j \leq \alpha}$$

be the $(\alpha+1) \times (\alpha+1)$ matrix over $\mathbb{Q}(X, Y)$ with entries

$$M_{w,0} = (-1)^w \frac{(Y-X)X_w}{Y_{w+1}},$$

$$M_{w,j} = \sum_v (-1)^{w-v} \binom{j+w-v-1}{w-v} \binom{X+j}{v} \left(\binom{Y+j-v}{j-v} - \binom{X+j-v}{j-v} \right),$$

for $0 \leq w \leq \alpha$ and $0 < j \leq \alpha$. Then the first $\alpha - 1$ entries of

$$Mc = M(Y_\alpha, c_1, \dots, c_\alpha)^T = (d_0, \dots, d_\alpha)^T$$

are zero, and $d_\alpha = \frac{(Y-X)_{\alpha+1}}{Y-\alpha}$.

Lemma 9. Suppose that $s, \alpha, \beta \in \mathbb{Z}$ are such that

$$1 \leq \beta \leq \alpha \leq \frac{s}{2} - 2 \leq \frac{p-5}{2}.$$

Let $B = B_\alpha$ denote the matrix defined in lemma 6. Let M denote the $(\alpha + 1) \times (\alpha + 1)$ matrix with entries in \mathbb{F}_p such that if $i \in \{1, \dots, \beta\}$ and $j \in \{0, \dots, \alpha\}$ then

$$M_{i,j} = \binom{\beta}{i} \cdot \begin{cases} \binom{s-\alpha-\beta+i}{i}^{-1} (-1)^{i+1} & \text{if } j = 0, \\ \binom{s-\alpha-\beta+j}{j-i} & \text{if } j > 0, \end{cases}$$

and if $i \in \{0, \dots, \alpha\} \setminus \{1, \dots, \beta\}$ and $j \in \{0, \dots, \alpha\}$ then $M_{i,j}$ is the reduction modulo p of

$$\begin{aligned} p^{-[j=0]} \sum_{w=0}^{\alpha} B_{i,w} \sum_v (-1)^{w-v} \binom{j+w-v-1}{w-v} \binom{s+\beta(p-1)-\alpha+j}{v}^{\partial} \\ \cdot \sum_{u=0}^{\beta} \binom{s+\beta(p-1)-\alpha+j-v}{u(p-1)+j-v} \\ - [i=0] p^{-[j=0]} \binom{s+\beta(p-1)-\alpha+j}{j}^{\partial} \\ - [j=0] \sum_{w=0}^{\alpha} B_{i,w} (-1)^w \binom{s+\beta(p-1)-\alpha}{w} \frac{w!}{(s-\alpha)_{w+1}}. \end{aligned}$$

Then there is a solution of

$$M(z_0, \dots, z_\alpha)^T = (1, 0, \dots, 0)^T$$

such that $z_0 \neq 0$.

Now let us prove some additional combinatorial results.

Lemma 10. Suppose that $s, \alpha \in \mathbb{Z}_{\geq 0}$ are such that

$$s \in \{2, 4, \dots, p-3\} \text{ and } \frac{s}{2} \leq \alpha < s \text{ and } \alpha \leq \frac{p-3}{2}.$$

For $w, j \in \mathbb{Z}_{\geq 0}$ let $F_{w,j}(z) \in \mathbb{F}_p[z]$ denote the polynomial

$$\sum_v (-1)^{w-v} \binom{j+w-v-1}{w-v} \binom{z-\alpha+j}{v} \binom{\overline{s-\alpha+j-v}}{\overline{j-v}} - \binom{z-\alpha+j}{j} \binom{0}{w} - \binom{z-\alpha+j}{s-\alpha} \binom{z-s}{w}.$$

Let $C_0(z), \dots, C_\alpha(z) \in \mathbb{F}_p[z]$ denote the polynomials

$$C_j(z) = \begin{cases} \binom{\alpha}{s-\alpha-1}^{-1} \frac{s-z}{\alpha+1} & \text{if } j = 0, \\ \frac{(-1)^{j+1}}{j+1} \binom{s-\alpha-1}{\alpha-j} (z-\alpha) & \text{if } j \in \{1, \dots, \alpha\}. \end{cases}$$

Let $F_1(z), F_2(z) \in \mathbb{F}_p[z]$ denote the polynomials

$$\begin{aligned} F_1(z) &= \sum_{j=0}^{\alpha} C_j(z) F_{w,j}(z), \\ F_2(z) &= -[w=0] \binom{s-z-1}{\alpha+1}. \end{aligned}$$

Note that all of these polynomials depend on s and α . Then $F_1(z) = F_2(z)$.

Proof. Let us first show that

$$(1) \quad C_0(z) \binom{z-\alpha}{s-\alpha} + \sum_{j=1}^{\alpha} C_j(z) \binom{z-\alpha+j}{s-\alpha} = \frac{(-1)^{\alpha+1} (z-\alpha)}{s-\alpha}.$$

Since

$$C_0(z) \binom{z-\alpha}{s-\alpha} = \binom{\alpha}{s-\alpha-1}^{-1} \frac{s-z}{\alpha+1} \frac{z-\alpha}{s-\alpha} \binom{z-\alpha-1}{s-\alpha-1},$$

this is equivalent to

$$\binom{\alpha}{s-\alpha-1}^{-1} \frac{s-z}{\alpha+1} \binom{z-\alpha-1}{s-\alpha-1} + \sum_{j=1}^{\alpha} \frac{(-1)^{j+1} (\alpha-j+1)}{j+1} \binom{s-\alpha}{\alpha-j+1} \binom{z-\alpha+j}{s-\alpha} = (-1)^{\alpha+1}.$$

The polynomial on the left side has degree at most $s - \alpha$. The coefficient of $z^{s-\alpha}$ in it is $-\frac{(2\alpha-s+1)!}{(\alpha+1)!}$ plus

$$\begin{aligned} \frac{1}{(s-\alpha-1)!} \sum_j \frac{(-1)^{j+1}}{j+1} \binom{s-\alpha-1}{\alpha-j} &= \frac{1}{(s-\alpha-1)!} \sum_j \frac{(-1)^{j+1}}{j+1} [X^{s-2\alpha+j-1}] (1+X)^{s-\alpha-1} \\ &= \sum_j \frac{(-1)^{j+1}}{(j+1)} [X^j] X^{2\alpha-s-1} (1+X)^{s-\alpha-1} \\ &= \frac{1}{(s-\alpha-1)!} \int_0^{-1} Y^{2\alpha-s+1} (1+Y)^{s-\alpha-1} dY \\ &= \frac{(-1)^s (2\alpha-s+1)!}{(\alpha+1)!}. \end{aligned}$$

Since s is even, that coefficient is zero. Therefore it is enough to show that the two polynomials are equal when evaluated at $z \in \{\alpha+1, \dots, s\}$. At these points the polynomial on the left side is equal to

$$(s-\alpha) \sum_j \frac{(-1)^{j+1}}{j+1} \binom{s-\alpha-1}{\alpha-j} \binom{s-\alpha-\gamma+j}{s-\alpha}$$

for $\gamma \in \{0, \dots, s-\alpha-1\}$. We have

$$\begin{aligned} \sum_j \frac{(-1)^{j+1}}{j+1} \binom{s-\alpha-1}{\alpha-j} \binom{s-\alpha-\gamma+j}{s-\alpha} &= \sum_j \frac{(-1)^{s-\alpha+j+1}}{j+1} \binom{s-\alpha-1}{\alpha-j} \binom{\gamma-j-1}{s-\alpha} \\ &= \sum_u \binom{\gamma}{u} \sum_j \frac{(-1)^{s-\alpha+j+1}}{j+1} \binom{s-\alpha-1}{\alpha-j} \binom{-j-1}{s-\alpha-u} \\ &= \sum_u \binom{\gamma}{u} \sum_j \frac{(-1)^{s-\alpha+j}}{s-\alpha-u} \binom{s-\alpha-1}{\alpha-j} \binom{-j-2}{s-\alpha-u-1} \\ &= \sum_u \frac{(-1)^{u+1}}{s-\alpha-u} \binom{\gamma}{u} \sum_j \binom{s-\alpha-1}{\alpha-j} \binom{-s+\alpha+u}{j+2} \\ &= \sum_u \frac{(-1)^{u+1}}{s-\alpha-u} \binom{\gamma}{u} \binom{u-1}{\alpha+2} = \frac{(-1)^{\alpha+1}}{s-\alpha}. \end{aligned}$$

The third equality follows from $\binom{\gamma}{u} = 0$ for $u > s - \alpha - 1$, and the last equality follows from $\binom{u-1}{\alpha+2} = 0$ for $u \in \{1, \dots, s - \alpha - 1\}$. In particular, (1) is indeed true.

So both $F_1(z)$ and $F_2(z)$ have degree at most $\alpha+1$, and therefore they are equal if they are equal when evaluated at

$$z \in \{s + \gamma(p-1) \mid \gamma \in \{0, \dots, \alpha+1\}\}.$$

It is easy to verify that $F_1(s) = F_2(s)$, and when

$$z \in \{s + \gamma(p-1) \mid \gamma \in \{1, \dots, \alpha+1\}\}$$

the fact that

$$\sum_{i=1}^{\gamma-1} \binom{s+\gamma(p-1)-\alpha+j}{i(p-1)+j} \binom{i(p-1)}{w} = F_{w,j}(s + \gamma(p-1))$$

(due to (c-g)) implies that the equation $F_1(s + \gamma(p-1)) = F_2(s + \gamma(p-1))$ is equivalent to

$$\sum_{j=0}^{\alpha} C_j(s + \gamma(p-1)) \sum_{i=1}^{\gamma-1} \binom{s+\gamma(p-1)-\alpha+j}{i(p-1)+j} \binom{i(p-1)}{w} = -[w=0] \binom{-\gamma(p-1)-1}{\alpha+1}.$$

Note that $\binom{-\gamma(p-1)-1}{\alpha+1} = \binom{\gamma-1}{\alpha+1} = 0$ and therefore the right side vanishes. Let us reiterate that all computations done in this proof are over \mathbb{F}_p . Let us write $C_j^\gamma = C_j(s + \gamma(p-1))$. The desired identity

$$\sum_{j=0}^{\alpha} C_j^\gamma \sum_{i=1}^{\gamma-1} \binom{s+\gamma(p-1)-\alpha+j}{i(p-1)+j} \binom{i(p-1)}{w} = 0$$

follows if

$$\sum_{j=0}^{\alpha} C_j^\gamma \binom{s+\gamma(p-1)-\alpha+j}{i(p-1)+j} = 0$$

for all $i \in \{1, \dots, \gamma-1\}$. If $j > 0$ and $C_j^\gamma \neq 0$ then

$$j \geq 2\alpha - s + 1 \geq \alpha + \gamma - s$$

and consequently

$$\binom{s+\gamma(p-1)-\alpha+j}{i(p-1)+j} = \begin{cases} \binom{\gamma}{i} \binom{s-\alpha-\gamma+j}{s-\alpha-\gamma+i} & \text{if } s-\alpha-\gamma+i \geq 0 \\ \binom{\gamma}{i-1} \binom{s-\alpha-\gamma+j}{p+s-\alpha-\gamma+i} & \text{if } s-\alpha-\gamma+i < 0 \end{cases} \\ = \binom{\gamma}{i} \binom{s-\alpha-\gamma+j}{s-\alpha-\gamma+i}.$$

On the other hand,

$$\binom{s+\gamma(p-1)-\alpha}{i(p-1)} = \binom{\gamma-1}{i-1} \binom{s-\alpha-\gamma}{s-\alpha-\gamma+i}.$$

Since

$$\binom{\gamma-1}{i-1} = \frac{i}{\gamma} \binom{\gamma}{i} \in \mathbb{F}_p^\times$$

(as that $0 < i < \gamma \leq \alpha + 1$), what we want to show is that

$$C_0^\gamma \frac{i}{\gamma} \binom{s-\alpha-\gamma}{s-\alpha-\gamma+i} + \sum_{j=1}^{\alpha} C_j^\gamma \binom{s-\alpha-\gamma+j}{s-\alpha-\gamma+i} = 0$$

for all $i \in \{1, \dots, \gamma-1\}$. That is equivalent to

$$F_3(s + \gamma(p-1)) = 0,$$

where $F_3(z) \in \mathbb{F}_p[z]$ is defined as

$$F_3(z) = \binom{\alpha}{s-\alpha-1}^{-1} \frac{s-z-w}{\alpha+1} \binom{z-\alpha-1}{s-\alpha-w-1} + \sum_{j=1}^{\alpha} \frac{(-1)^{j+1}(s-\alpha-w)}{j+1} \binom{s-\alpha-1}{\alpha-j} \binom{z-\alpha+j}{s-\alpha-w}$$

with $w = \gamma - i > 0$. The degree of $F_3(z)$ is at most $s - \alpha - w$, and in fact the coefficient of $z^{s-\alpha-w}$ in it is $-\frac{(s-\alpha-1)_w (2\alpha-s+1)!}{(\alpha+1)!}$ plus

$$\frac{1}{(s-\alpha-w-1)!} \sum_j \frac{(-1)^{j+1}}{j+1} \binom{s-\alpha-1}{\alpha-j} = \frac{(s-\alpha-1)_w (2\alpha-s+1)!}{(\alpha+1)!},$$

i.e. the coefficient of $z^{s-\alpha-w}$ in it is zero. Therefore the degree of $F_3(z)$ is less than $s - \alpha - w$, so it is enough to show that $F_3(z)$ is equal to zero when evaluated at

$$z \in \{\alpha+1, \dots, s-w\}.$$

At these points $F_3(z)$ is equal to

$$(s - \alpha - w) \sum_j \frac{(-1)^{j+1}}{j+1} \binom{s-\alpha-1}{\alpha-j} \binom{s-\alpha-\gamma+j}{s-\alpha-w}$$

for $\gamma \in \{w, \dots, s - \alpha - 1\}$. We have

$$\begin{aligned} \sum_j \frac{(-1)^{j+1}}{j+1} \binom{s-\alpha-1}{\alpha-j} \binom{s-\alpha-\gamma+j}{s-\alpha-w} &= \sum_j \frac{(-1)^{s-\alpha+j-w+1}}{j+1} \binom{s-\alpha-1}{\alpha-j} \binom{\gamma-j-w-1}{s-\alpha-w} \\ &= \sum_u \binom{\gamma-w}{u} \sum_j \frac{(-1)^{s-\alpha+j-w+1}}{j+1} \binom{s-\alpha-1}{\alpha-j} \binom{-j-1}{s-\alpha-u-w} \\ &= \sum_u \binom{\gamma-w}{u} \sum_j \frac{(-1)^{s-\alpha+j-w}}{s-\alpha-u-w} \binom{s-\alpha-1}{\alpha-j} \binom{-j-2}{s-\alpha-u-w-1} \\ &= \sum_u \frac{(-1)^{u+1}}{s-\alpha-u-w} \binom{\gamma-w}{u} \sum_j \binom{s-\alpha-1}{\alpha-j} \binom{-s+\alpha+u+w}{j+2} \\ &= \sum_u \frac{(-1)^{u+1}}{s-\alpha-u-w} \binom{\gamma-w}{u} \sum_j \binom{u+w-1}{\alpha+2} = 0. \end{aligned}$$

The last equality follows from $\binom{\gamma-w}{u} = 0$ for

$$u \notin \{0, \dots, s - \alpha - w - 1\}.$$

This proves that indeed $F_3(z) = 0$ and therefore that $F_1(z) = F_2(z)$. \blacksquare

Lemma 11. *Suppose that $\alpha \in \mathbb{Z}_{\geq 0}$. For $w, j \in \{0, \dots, \alpha\}$ let*

$$F_{w,j}(z, \psi) \in \mathbb{F}_p[z, \psi]$$

denote the polynomial

$$\sum_v (-1)^{w-v} \binom{j+w-v-1}{w-v} \binom{z-\alpha+j}{v} \left(\binom{\psi-\alpha+j-v}{j-v} - \binom{z-\alpha+j-v}{j-v} \right).$$

Note that this depends on α . Then

$$\sum_{j=1}^{\alpha} (-1)^{\alpha-j} \binom{\psi-\alpha+1}{\alpha-j} F_{w,j}(z, \psi) = (-1)^{\alpha} ([w = \alpha] - [w = 0]) \binom{\psi-z}{\alpha}.$$

Proof. Both sides of the equation we want to prove have degree α and the coefficient of z^α on each side is $\frac{1}{\alpha!} ([w = \alpha] - [w = 0])$. So the two sides are equal if they are equal when evaluated at the points (z, ψ) such that

$$(z, \psi) \in \{(u + \gamma(p-1) + \alpha, u + \alpha) \mid u \in \{0, \dots, \alpha\}, \gamma \in \{0, \dots, \alpha-1\}\}.$$

The right side is zero when evaluated at these points, and

$$F_{w,j}(u + \gamma(p-1) + \alpha, u + \alpha) = \sum_{i=1}^{\gamma} \binom{u+\gamma(p-1)+j}{i(p-1)+j} \binom{i(p-1)}{w}$$

by (c-g). Thus we want to show that

$$\sum_{j=1}^{\alpha} (-1)^{\alpha-j} \binom{u+1}{\alpha-j} \sum_{i=1}^{\gamma} \binom{u+\gamma(p-1)+j}{i(p-1)+j} \binom{i(p-1)}{w} = O(p)$$

for $0 \leq u, w \leq \alpha$ and $0 \leq \gamma < \alpha$. Since

$$\binom{u+\gamma(p-1)+j}{i(p-1)+j} \binom{i(p-1)}{w} = \binom{\gamma}{i} \binom{u+j-\gamma}{j-i} \binom{-i}{w} + O(p),$$

that is equivalent to

$$\sum_{i,j>0} (-1)^{\alpha+w-i} \binom{u+1}{\alpha-j} \binom{\gamma}{i} \binom{\gamma-u-i-1}{j-i} \binom{i+w-1}{w} = O(p).$$

This follows from the facts that

$$\sum_{j>0} \binom{u+1}{\alpha-j} \binom{\gamma-u-i-1}{j-i} = \binom{\gamma-i}{\alpha-i}$$

for $i > 0$ by Vandermonde's convolution formula, and

$$\binom{\gamma}{i} \binom{\gamma-i}{\alpha-i} = \binom{\alpha}{i} \binom{\gamma}{\alpha} = 0$$

since $\gamma \in \{0, \dots, \alpha-1\}$. ■

Lemma 12. Suppose that $s, \alpha, \beta \in \mathbb{Z}$ are such that

$$s \in \{2, 4, \dots, p-3\} \text{ and } \alpha = \beta = \frac{s}{2} + 1.$$

Let M denote the $(\alpha+1) \times (\alpha+1)$ matrix with entries in \mathbb{F}_p defined in lemma 14. Suppose that $C_0, \dots, C_\alpha \in \mathbb{F}_p$ are defined as

$$C_j = (-1)^{\alpha+j+1} \alpha \binom{\alpha-2}{j-2}.$$

Then

$$M(C_0, \dots, C_\alpha)^T = (0, \dots, 0, 1)^T.$$

Proof. The equation associated with the i th row of M is straightforward if $i \notin \{0, \alpha\}$. Since $M_{0,j}$ is equal to

$$\begin{aligned} \sum_{l,v=0}^{\alpha} (-1)^{l+v} \binom{j-v}{l-v} \binom{j-2}{v} \binom{\alpha+j-v-2}{j-v} (1 + [\alpha = 2 \& j = v]) \\ - \binom{j-2}{j}^{\partial} - \binom{j-2}{\alpha-2} \binom{0}{\alpha}^{\partial} \end{aligned}$$

and since

$$\begin{aligned} \sum_j (-1)^j \binom{\alpha-2}{j-2} \frac{1}{j(j-1)} &= \frac{1}{\alpha}, \\ \sum_j (-1)^j \binom{\alpha-2}{j-2} \binom{j-2}{s-\alpha} \binom{0}{\alpha}^{\partial} &= (-1)^{\alpha} \binom{0}{\alpha}^{\partial} = -\frac{1}{\alpha}, \\ \sum_l^{\alpha} (-1)^{l+\alpha} \binom{2-\alpha}{l-\alpha} \binom{0}{\alpha}^{\partial} \binom{p-1}{\alpha-2} &= -\frac{1}{\alpha}, \\ \sum_l^{\alpha} (-1)^{l+\alpha} \binom{2-\alpha}{l-\alpha} \binom{0}{\alpha}^{\partial} \binom{0}{\alpha-2} &= -\frac{[\alpha=2]}{\alpha}, \end{aligned}$$

the equation associated with the zeroth row is

$$\sum_j (-1)^j \binom{\alpha-2}{j-2} \sum_{l,v=0}^{\alpha} (-1)^{l+v} \binom{j-v}{l-v} \binom{j-2}{v}^{\partial} \binom{\alpha+j-v-2}{j-v} = -\frac{1}{\alpha},$$

and it follows from the fact that

$$\sum_{l=0}^{\alpha} (-1)^l \binom{l}{i} \binom{j-v}{l-v} = (-1)^j \binom{v}{j-i}$$

for $0 \leq v \leq j \leq \alpha$. This shows the equation associated with the zeroth row. Since $M_{\alpha,j}$ is equal to

$$[j=2] \binom{0}{\alpha}^{\partial} + [j=\alpha] F_{\alpha,\alpha,0}(\alpha-2) - \binom{j-2}{\alpha-2}^{\partial} - (-1)^{\alpha} \binom{j-2}{\alpha-2} \binom{-1}{\alpha}^{\partial},$$

the equation associated with the α th row is

$$\binom{0}{\alpha}^{\partial} - \sum_j (-1)^j \binom{\alpha-2}{j-2} \binom{j-2}{\alpha-2}^{\partial} = \binom{-1}{\alpha}^{\partial} - (-1)^{\alpha} F_{\alpha,\alpha,0}(\alpha-2) + \frac{(-1)^{\alpha+1}}{\alpha},$$

and it follows from the facts that

$$F_{\alpha,\alpha,0}(\alpha-2) = F_{\alpha,\alpha,0}(-1) = (-1)^{\alpha} \binom{-1}{\alpha}^{\partial}$$

and that the polynomial $\binom{X}{\alpha-2}^{\partial} \in \mathbb{F}_p[X]$ has degree less than $\alpha-2$ (and is zero if $\alpha=2$) and therefore

$$\sum_j (-1)^j \binom{\alpha-2}{j-2} \binom{j-2}{\alpha-2}^{\partial} = 0.$$

This shows the equation associated with the α th row and concludes the proof. \blacksquare

Lemma 13. Suppose that $s, \alpha, \beta \in \mathbb{Z}$ are such that

$$s \in \{2, 4, \dots, p-3\} \text{ and } \alpha = \frac{s}{2} + 1 \text{ and } \beta \in \{\frac{s}{2}, \frac{s}{2} + 1\}.$$

Let A_0 denote the $\beta \times \beta$ matrix with entries in \mathbb{Q}_p defined as

$$A_0 = \left(p^{[j=1]-[i \leq \beta-\alpha+1]} \binom{s+\beta(p-1)-\alpha+j}{i(p-1)+j} \right)_{0 \leq i < \beta, \alpha-\beta < j \leq \alpha}.$$

Then A_0 has entries in \mathbb{Z}_p and is invertible over \mathbb{Z}_p .

Proof. It is easy to verify that A_0 is integral, since if $j > 1$ then

$$s - \alpha - \beta + j \geq 0$$

and therefore

$$\binom{s+\beta(p-1)-\alpha+j}{i(p-1)+j} = \binom{\beta}{i} \binom{s-\alpha-\beta+j}{j-i} + O(p) = O(p)$$

for $i \leq \beta - \alpha + 1$. Let us show that A_0 is invertible (over \mathbb{Z}_p) by showing that \bar{A}_0 is invertible (over \mathbb{F}_p). Suppose first that $\beta = \alpha - 1$ and denote the columns of A_0 by $\mathbf{c}_2, \dots, \mathbf{c}_{\alpha}$. The bottom left $(\alpha-3) \times (\alpha-3)$ submatrix of \bar{A}_0 is upper triangular with units on the diagonal. Moreover, since

$$\begin{aligned} \sum_j (-1)^j \binom{s-\beta-j-1}{\alpha-i-j-1} \binom{\alpha-2}{j} &= \sum_j (-1)^j \binom{\beta-j-1}{i-1} \binom{\beta-1}{j} = 0, \\ \sum_j (-1)^{j-1} (j-1) \binom{s-\beta-j}{\alpha-i-j} \binom{\alpha-1}{j} &= \sum_j (-1)^{j-1} (j-1) \binom{\beta-j}{i-1} \binom{\beta}{j} = 0, \end{aligned}$$

all but the top two entries of each of the vectors

$$\begin{aligned}\mathbf{c}_{\alpha-1} - \binom{\alpha-2}{1} \mathbf{c}_{\alpha-2} + \cdots + (-1)^{\alpha-3} \binom{\alpha-2}{\alpha-3} \mathbf{c}_2, \\ \mathbf{c}_\alpha - \binom{\alpha-1}{2} \mathbf{c}_{\alpha-2} + \cdots + (-1)^{\alpha-3} (\alpha-3) \binom{\alpha-1}{\alpha-2} \mathbf{c}_2\end{aligned}$$

are zero. Thus it is enough to show that the 2×2 matrix consisting of those four entries is invertible (over \mathbb{F}_p). This 2×2 matrix is

$$\begin{pmatrix} e_{0,0} & e_{0,1} \\ (-1)^\beta \beta & (-1)^\beta \beta(\beta-1) \end{pmatrix}$$

with

$$\begin{aligned}e_{0,0} &= \beta \sum_{j=0}^{\beta-1} (-1)^j \binom{\beta-1}{j} \binom{\beta-j-1}{\beta-j}^\partial = \sum_{j=0}^{\beta-1} \frac{(-1)^j \beta}{\beta-j} \binom{\beta-1}{j} \\ &= \sum_{j=0}^{\beta-1} (-1)^j \binom{\beta}{j} = (-1)^{\beta+1}, \\ e_{0,1} &= \beta \sum_{j=0}^{\beta} (-1)^{j-1} (j-1) \binom{\beta}{j} \binom{\beta-j}{\beta-j+1}^\partial = \sum_{j=0}^{\beta} \frac{(-1)^{j-1} \beta(j-1)}{\beta-j+1} \binom{\beta}{j} \\ &= \sum_{j=0}^{\beta} \frac{(-1)^{j-1} \beta(j-1)}{\beta+1} \binom{\beta+1}{j} = \frac{(-1)^{\beta-1} \beta^2}{\beta+1},\end{aligned}$$

so it has determinant $\frac{\beta}{\beta+1} \in \mathbb{F}_p^\times$. Now suppose that $\beta = \alpha$ and denote the columns of A_0 by $\mathbf{c}_1, \dots, \mathbf{c}_\alpha$. The bottom left $(\alpha-1) \times (\alpha-1)$ submatrix of \overline{A}_0 is upper triangular with units on the diagonal, all but the top entry of the vector

$$\mathbf{c}_\alpha - \binom{\alpha-2}{1} \mathbf{c}_{\alpha-1} + \cdots + (-1)^{\alpha-2} \binom{\alpha-2}{\alpha-2} \mathbf{c}_2$$

are zero, and that top entry is

$$\beta \sum_{j=0}^{\beta-2} (-1)^j \binom{\beta-2}{j} \binom{\beta-j-2}{\beta-j}^\partial = \sum_{j=0}^{\beta-2} \frac{(-1)^j}{\beta-1} \binom{\beta}{j} = (-1)^\beta \in \mathbb{F}_p^\times.$$

Therefore \overline{A}_0 is invertible. \blacksquare

Lemma 14. *Suppose that $s, \alpha, \beta \in \mathbb{Z}$ are such that*

$$s \in \{2, 4, \dots, p-3\} \text{ and } \frac{s}{2} \leq \alpha \leq s \text{ and } 1 \leq \beta \leq \alpha.$$

Let M denote the $(\alpha+1) \times (\alpha+1)$ matrix with entries in \mathbb{F}_p such that if $i \in \{1, \dots, \beta-1\}$ and $j \in \{0, \dots, \alpha\}$ then

$$M_{i,j} = \binom{s+\beta(p-1)-\alpha+j}{i(p-1)+j},$$

and if $i \in \{0, \dots, \alpha\} \setminus \{1, \dots, \beta-1\}$ and $j \in \{0, \dots, \alpha\}$ then

$$\begin{aligned}M_{i,j} &= \sum_{l,v=0}^{\alpha} (-1)^{i+l+v} \binom{l}{i} \binom{j-v}{l-v} \binom{s-\alpha-\beta+j}{v}^\partial \binom{s-\alpha+j-v}{j-v} \\ &\quad - [i=0] \binom{s-\alpha-\beta+j}{j}^\partial - [i=\beta] \binom{s-\alpha-\beta+j}{s-\alpha}^\partial \\ &\quad - (-1)^i \binom{s-\alpha-\beta+j}{s-\alpha} \sum_{l=0}^{\alpha} \binom{l}{i} \binom{l-\beta-1}{l}^\partial.\end{aligned}$$

Suppose that $C_0, \dots, C_\alpha \in \mathbb{F}_p$ are defined as

$$C_j = \begin{cases} 1 & \text{if } j=0, \\ \frac{(-1)^{j+1}(s-\alpha-\beta)}{\beta} \binom{j}{2\alpha-s+1} \binom{\alpha+1}{j+1} & \text{if } j \in \{1, \dots, \alpha\}. \end{cases}$$

Then

$$M(C_0, C_1, \dots, C_\alpha)^T = \left(\frac{(-1)^{\alpha+\beta+1}(s-\alpha)(\alpha-\beta+1)}{\beta^2(2\alpha-s+1)\binom{\alpha}{\beta}} \binom{\alpha}{s-\alpha}, 0, \dots, 0 \right)^T.$$

Proof. Let us denote the rows of M by

$$\mathbf{r}_0, \dots, \mathbf{r}_\alpha.$$

Note that if $j > 0$ and $C_j \neq 0$ then $j > 2\alpha - s$, so $s - \alpha + j > \alpha$ and in particular

$$\binom{s-\alpha+j-v}{j-v} = \binom{s-\alpha+j-v}{j-v}.$$

We have the following string of equations:

$$\begin{aligned} & \sum_{j \geq 0} (-1)^{j+1} \binom{j}{2\alpha-s+1} \binom{\alpha+1}{j+1} \binom{s-\alpha-\beta+j}{s-\alpha} \\ &= \sum_u \binom{\beta}{u} \sum_{j \geq 0} (-1)^{s-\alpha+j+1} \binom{j}{2\alpha-s+1} \binom{\alpha+1}{j+1} \binom{-j-1}{s-\alpha-u} \\ &= \sum_u \binom{\beta}{u} \binom{\alpha-u+1}{s-\alpha-u} \sum_{j \geq 0} (-1)^{j+u+1} \binom{\alpha+1}{j+1} \binom{s-\alpha+j-u}{\alpha-u+1} \\ &= \sum_u \binom{\beta}{u} \binom{\alpha-u+1}{s-\alpha-u} \left((-1)^{u+1} \binom{s-\alpha-u-1}{\alpha-u+1} + \sum_j (-1)^{j+u+1} \binom{\alpha+1}{j+1} \binom{s-\alpha+j-u}{\alpha-u+1} \right) \\ &= \sum_u \binom{\beta}{u} \binom{\alpha-u+1}{s-\alpha-u} \left((-1)^{u+1} \binom{s-\alpha-u-1}{\alpha-u+1} + [u=0](-1)^{\alpha+1} \right) \\ &= (-1)^\alpha \left(\binom{\beta}{s-\alpha} - \binom{\alpha+1}{s-\alpha} \right). \end{aligned}$$

The first two equalities amount to rewriting the binomial coefficients. The third equality amounts to computing the inner sum. The fourth equality follows from (c-e). The fifth equality amounts to computing the outer sum. This string of equations implies that

$$\sum_{j=0}^\alpha C_j \binom{s-\alpha-\beta+j}{s-\alpha} = (-1)^{\alpha+1} \frac{s-\alpha-\beta}{\beta} \binom{\alpha+1}{s-\alpha}.$$

Our task is to compute $\mathbf{r}_i(C_0, C_1, \dots, C_\alpha)^T$ for $i \in \{0, \dots, \alpha\}$.

- Computing $\mathbf{r}_0(C_0, C_1, \dots, C_\alpha)^T$. If $j > 2\alpha - s$ then

$$\sum_{l=0}^\alpha (-1)^l \binom{l}{i} \binom{j-v}{l-v} = (-1)^j \binom{v}{j-i}$$

for $0 \leq v \leq j \leq \alpha$ and therefore

$$\begin{aligned} M_{0,j} &= \sum_{v=0}^\alpha (-1)^{j+v} \binom{v}{j} \binom{s-\alpha-\beta+j}{v} \binom{s-\alpha+j-v}{j-v} \\ &\quad - \binom{s-\alpha-\beta+j}{j} \binom{\partial}{s-\alpha} - \binom{s-\alpha-\beta+j}{s-\alpha} \sum_{l=0}^\alpha \binom{l-\beta-1}{l} \binom{\partial}{s-\alpha} \\ &= - \binom{s-\alpha-\beta+j}{s-\alpha} \sum_{l=0}^\alpha \binom{l-\beta-1}{l} \binom{\partial}{s-\alpha}. \end{aligned}$$

The second equality follows from the fact that $\binom{v}{j} = 0$ if $v < j$. We also have

$$\begin{aligned} M_{0,0} &= \sum_{l,v=0}^\alpha (-1)^{l+v} \binom{-v}{l-v} \binom{s-\alpha-\beta}{v} \binom{s-\alpha-v}{\underline{v}} \\ &\quad - \binom{s-\alpha-\beta}{s-\alpha} \sum_{l=0}^\alpha \binom{l-\beta-1}{l} \binom{\partial}{s-\alpha} \\ &= \sum_{l,v=0}^\alpha (-1)^{\alpha+l+v} \binom{-v}{l-v} \binom{s-\alpha-\beta}{v} \binom{v}{s-\alpha} \\ &\quad - \binom{s-\alpha-\beta}{s-\alpha} \sum_{l=0}^\alpha \binom{l-\beta-1}{l} \binom{\partial}{s-\alpha} \\ &= \sum_{l,v=0}^\alpha (-1)^{\alpha+l+v} \binom{-v}{l-v} \binom{s-\alpha-\beta}{v} \binom{v}{s-\alpha} \\ &\quad + \binom{s-\alpha-\beta}{s-\alpha} \sum_{l=0}^\alpha (-1)^l \sum_v (-1)^{v+1} \binom{s-\alpha-\beta}{v} \binom{s-\alpha-v}{l-v}. \end{aligned}$$

The third equality follows from lemma 7. Thus $\mathbf{r}_0(C_0, \dots, C_\alpha)^T$ is equal to

$$\begin{aligned}
& \sum_{l,v=0}^{\alpha} (-1)^{\alpha+l+v} \binom{s-\alpha-\beta}{v} \partial \left(\binom{-v}{l-v} \binom{v}{s-\alpha} + \frac{s-\alpha-\beta}{\beta} \binom{\alpha+1}{s-\alpha} \binom{s-\alpha-v}{l-v} \right) \\
&= (-1)^\alpha \sum_{v=0}^{\alpha} \binom{s-\alpha-\beta}{v} \partial \left(\binom{\alpha}{v} \binom{v}{s-\alpha} + \frac{s-\alpha-\beta}{\beta} \binom{\alpha+1}{s-\alpha} \binom{2\alpha-s}{\alpha-v} \right) \\
&= \left(\binom{\alpha}{s-\alpha} + \frac{s-\alpha-\beta}{\beta} \binom{\alpha+1}{s-\alpha} \right) \sum_{v=0}^{\alpha} (-1)^v \binom{s-\alpha-\beta}{v} \partial \left(\binom{s-\alpha-v-1}{\alpha-v} \right) \\
&= \frac{(-1)^{\alpha+\beta+1}}{\beta \binom{\alpha}{\beta}} \left(\binom{\alpha}{s-\alpha} + \frac{s-\alpha-\beta}{\beta} \binom{\alpha+1}{s-\alpha} \right) \\
&= \frac{(-1)^{\alpha+\beta+1} (s-\alpha)(\alpha-\beta+1)}{\beta^2 (2\alpha-s+1) \binom{\alpha}{\beta}} \binom{\alpha}{s-\alpha}.
\end{aligned}$$

The third equality follows from lemma 7. Thus we have computed

$$\mathbf{r}_0(C_0, \dots, C_\alpha)^T = \frac{(-1)^{\alpha+\beta+1} (s-\alpha)(\alpha-\beta+1)}{\beta^2 (2\alpha-s+1) \binom{\alpha}{\beta}} \binom{\alpha}{s-\alpha}.$$

- Computing $\mathbf{r}_i(C_0, C_1, \dots, C_\alpha)^T$ for $i \in \{1, \dots, \beta-1\}$. Let $w \in \mathbb{Z}$ be such that $i = \beta - w \in \{1, \dots, \beta-1\}$. Then

$$\begin{aligned}
& \sum_{j \geq 0} \frac{(-1)^{j+1} (s-\alpha-\beta)}{\beta} \binom{j}{2\alpha-s+1} \binom{\alpha+1}{j+1} \binom{s-\alpha-\beta+j}{s-\alpha-w} \\
&= \sum_u \binom{\alpha-\beta+1}{u} \sum_{j \geq 0} \frac{(-1)^{j+1} (s-\alpha-\beta)}{\beta} \binom{j}{2\alpha-s+1} \binom{\alpha+1}{j+1} \binom{s-2\alpha+j-1}{s-\alpha-w-u} \\
&= \sum_u \binom{\alpha-\beta+1}{u} \binom{\alpha-w-u+1}{s-\alpha-w-u} \sum_{j \geq 0} \frac{(-1)^{j+1} (s-\alpha-\beta)}{\beta} \binom{j}{\alpha-w-u+1} \binom{\alpha+1}{j+1} \\
&= (-1)^{\alpha-w-u} \frac{s-\alpha-\beta}{\beta} \sum_u \binom{\alpha-\beta+1}{u} \binom{\alpha-w-u+1}{s-\alpha-w-u} \\
&= \frac{s-\alpha-\beta}{\beta} \sum_u \binom{\alpha-\beta+1}{u} \binom{s-2\alpha-2}{s-\alpha-w-u} \\
&= \frac{s-\alpha-\beta}{\beta} \binom{s-\alpha-\beta-1}{s-\alpha-w} = -\frac{i}{\beta} \binom{s-\alpha-\beta}{s-\alpha-w}.
\end{aligned}$$

The third equality follows from (c-e). Consequently, if $i \in \{1, \dots, \beta-1\}$ then

$$\mathbf{r}_i(C_0, \dots, C_\alpha)^T = 0.$$

- Computing $\mathbf{r}_i(C_0, C_1, \dots, C_\alpha)^T$ for $i \in \{\beta, \dots, \alpha\}$. For these i we have

$$\begin{aligned}
M_{i,0} &= \sum_{l,v=0}^{\alpha} (-1)^{\alpha+i+l+v} \binom{l}{i} \binom{v}{s-\alpha} \binom{s-\alpha-\beta}{v} \partial \binom{-v}{l-v} \\
&\quad - [i = \beta] \binom{s-\alpha-\beta}{s-\alpha} \partial - (-1)^i \binom{s-\alpha-\beta}{s-\alpha} \sum_{l=0}^{\alpha} \binom{l}{i} \binom{l-\beta-1}{l} \partial,
\end{aligned}$$

and for $j > 2\alpha - s$ we also have

$$\begin{aligned}
M_{i,j} &= \sum_{l,v=0}^{\alpha} (-1)^{i+l+v} \binom{l}{i} \binom{j-v}{l-v} \binom{s-\alpha-\beta+j}{v} \partial \binom{s-\alpha+j-v}{j-v} \\
&\quad - [i = \beta] \binom{s-\alpha-\beta+j}{s-\alpha} \partial - (-1)^i \binom{s-\alpha-\beta+j}{s-\alpha} \sum_{l=0}^{\alpha} \binom{l}{i} \binom{l-\beta-1}{l} \partial.
\end{aligned}$$

The identity

$$\begin{aligned}
& \sum_{j=0}^{\alpha} (-1)^{j+1} \binom{j}{2\alpha-s+1} \binom{\alpha+1}{j+1} \binom{z+s-\alpha+j}{s-\alpha} \partial \\
&= \frac{\partial}{\partial z} \left(\sum_{j=0}^{\alpha} (-1)^{j+1} \binom{j}{2\alpha-s+1} \binom{\alpha+1}{j+1} \binom{z+s-\alpha+j}{s-\alpha} \right) \\
&= \frac{\partial}{\partial z} \left(\binom{z+s-\alpha-1}{s-\alpha} - \binom{s-2\alpha-2}{s-\alpha} \right) \\
&= \binom{z+s-\alpha-1}{s-\alpha} \partial
\end{aligned}$$

is true over $\mathbb{Q}_p[z]$. By evaluating at $z = -\beta$ we get

$$\sum_{j=1}^{\alpha} C_j \binom{s-\alpha-\beta+j}{s-\alpha}^{\partial} = \frac{s-\alpha-\beta}{\beta} \binom{s-\alpha-\beta-1}{s-\alpha}^{\partial},$$

and consequently

$$\binom{s-\alpha-\beta}{s-\alpha}^{\partial} + \sum_{j=1}^{\alpha} C_j \binom{s-\alpha-\beta+j}{s-\alpha}^{\partial} = \frac{1}{\beta} \binom{s-\alpha-\beta-1}{s-\alpha-1}.$$

This means that $(-1)^{\alpha+i} \beta \mathbf{r}_i(C_0, \dots, C_{\alpha})^T$ is equal to $\Phi(-\beta)$, with

$$\Phi(z) = (\alpha - s) \Phi'_1(z) - \Phi_2(z) + (z + s - \alpha) (\Phi'_1(z) + \Phi'_3(z) + \Phi'_4(z))$$

and

$$\Phi_1(z) = \sum_{l,v=0}^{\alpha} (-1)^{l+v+1} \binom{l}{i} \binom{v}{s-\alpha} \binom{z+s-\alpha}{v} \binom{-v}{l-v},$$

$$\Phi_2(z) = \binom{i-1}{s-\alpha-1} \binom{z+i-1}{i-1},$$

$$\Phi_3(z) = \sum_{l,j,v=0}^{\alpha} (-1)^{\alpha+j+l+v+1} \binom{j}{2\alpha-s+1} \binom{\alpha+1}{j+1} \binom{l}{i} \binom{j-v}{l-v} \binom{z+s-\alpha+j}{v} \binom{s-\alpha+j-v}{j-v},$$

$$\Phi_4(z) = \binom{\alpha+1}{s-\alpha} \sum_{l=0}^{\alpha} \binom{l}{i} \binom{z+l-1}{l} = \binom{\alpha+1}{s-\alpha} \binom{z+\alpha}{\alpha-i} \binom{z+i-1}{i}.$$

So we want to show that $\Phi(-\beta) = 0$. If $s = \alpha + \beta$ then this equation amounts to

$$\beta \Phi'_1(-\beta) + \Phi_2(-\beta) = 0,$$

and indeed

$$\begin{aligned} \beta \Phi'_1(-\beta) &= \beta \sum_{l,v=0}^{\alpha} (-1)^{l+v+1} \binom{l}{i} \binom{v}{\beta} \binom{0}{v}^{\partial} \binom{-v}{l-v} \\ &= \sum_{l,v=0}^{\alpha} \frac{(-1)^l \beta}{v} \binom{l}{i} \binom{v}{\beta} \binom{-v}{l-v} \\ &= \sum_{l,v=0}^{\alpha} (-1)^l \binom{l}{i} \binom{v-1}{\beta-1} \binom{-v}{l-v} \\ &= \sum_{l,v=0}^{\alpha} ([l=0](-1)^{\beta+l+1} + [l=\beta](-1)^l) \binom{l}{i} \\ &= (-1)^{\beta} \binom{\beta}{i} \\ &= [i=\beta](-1)^{\beta} \\ &= -\binom{i-1}{\beta-1} \binom{i-\beta-1}{i-1} = -\Phi_2(-\beta). \end{aligned}$$

Now suppose that $s \neq \alpha + \beta$. As in the proof of lemma 7 we can simplify $\Phi_1(z)$ to

$$\Phi_1(z) = -\binom{z+s-\alpha}{s-\alpha} \sum_{l=0}^{\alpha} \binom{l}{i} \binom{z+l-1}{l+\alpha-s}.$$

We can also simplify $\Phi_3(z)$ to

$$\begin{aligned} \Phi_3(z) &= \sum_{j,v=0}^{\alpha} (-1)^{\alpha+v+1} \binom{j}{2\alpha-s+1} \binom{\alpha+1}{j+1} \binom{v}{j-i} \binom{z+s-\alpha+j}{v} \binom{s-\alpha+j-v}{j-v} \\ &= \binom{z+i-1}{i} \sum_{j=0}^{\alpha} (-1)^{\alpha+j+1} \binom{j}{2\alpha-s+1} \binom{\alpha+1}{j+1} \binom{z+s-\alpha+j}{j-i}. \end{aligned}$$

Suppose first that $i > \beta$. Then

$$\Phi'_1(-\beta) = -\sum_{l=0}^{\alpha} \binom{l}{i} \left(\binom{s-\alpha-\beta}{s-\alpha}^{\partial} \binom{l-\beta-1}{l+\alpha-s} + \binom{s-\alpha-\beta}{s-\alpha} \binom{l-\beta-1}{l+\alpha-s}^{\partial} \right),$$

$$\Phi_2(-\beta) = 0,$$

$$\Phi'_3(-\beta) = \binom{i-\beta-1}{i}^{\partial} \sum_{j=0}^{\alpha} (-1)^{\alpha+j+1} \binom{j}{2\alpha-s+1} \binom{\alpha+1}{j+1} \binom{s-\alpha-\beta+j}{j-i},$$

$$\Phi'_4(-\beta) = \binom{\alpha+1}{s-\alpha} \binom{\alpha-\beta}{\alpha-i} \binom{i-\beta-1}{i}^{\partial}.$$

Thus if $s > \alpha + \beta$ then the equation $\Phi(-\beta) = 0$ is equivalent to

$$L_1(s, \alpha, \beta, i) = R_1(s, \alpha, \beta, i)$$

with

$$\begin{aligned} L_1 &:= \sum_{l=0}^{\alpha} \binom{l}{\beta+1} \binom{l-\beta-1}{i-\beta-1} \binom{l-\beta-1}{s-\alpha-\beta-1}, \\ R_1 &:= \binom{s-\alpha}{\beta+1} \sum_{j=0}^{\alpha} (-1)^{\alpha+j+1} \binom{j}{2\alpha-s+1} \binom{\alpha+1}{j+1} \binom{s-\alpha-\beta+j}{j-i} \\ &\quad + \binom{\alpha+1}{\beta+1} \binom{\alpha-\beta}{s-\alpha-\beta-1} \binom{\alpha-\beta}{\alpha-i}. \end{aligned}$$

Let us in fact show that

$$L_1(u, v, w, t) = R_1(u, v, w, t)$$

for all $u, v, w, t \geq 0$. We clearly have

$$L_1(u, 0, w, t) = R_1(u, 0, w, t)$$

since both sides are zero, and

$$\begin{aligned} &R_1(u+1, v+1, w, t) - R_1(u, v, w, t) \\ &\quad - L_1(u+1, v+1, w, t) + L_1(u, v, w, t) \\ &= \binom{u-v}{w+1} \frac{u-v}{2v-u+2} \sum_{j=0}^v (-1)^{v+j} \binom{j}{2v-u+1} \binom{v+1}{j} \binom{u-v-w+j}{j-t} \\ &\quad - \binom{u-v}{w+1} \binom{v+1}{2v-u+2} \binom{u-w+1}{v-t+1} \\ &\quad + \frac{u-v}{2v-u+2} \binom{v+1}{w+1} \binom{v-w}{u-v-w-1} \binom{v-w+1}{t-w}. \end{aligned}$$

All we need to show is that this is zero for all $u, v, w, t \geq 0$, which follows from

$$\begin{aligned} &\sum_j (-1)^j \binom{j}{2v-u+1} \binom{v+1}{j} \binom{u-v-w+j}{u-v-w+t} \\ &= \sum_{j,e} (-1)^j \binom{v-w+1}{u-v-w+i-e} \binom{j}{2v-u+1} \binom{v+1}{j} \binom{u-2v+j-1}{e} \\ &= \sum_{j,e} (-1)^j \binom{v-w+1}{u-v-w+i-e} \binom{j}{2v-u+e+1} \binom{v+1}{j} \binom{2v-u+e+1}{e} \\ &= \sum_{j,e} (-1)^{u+e+1} \binom{v-w+1}{u-v-w+t-e} \binom{u-2v-e-2}{j+u-2v-e-1} \binom{v+1}{v-j+1} \binom{2v-u+e+1}{e} \\ &= \sum_e (-1)^{u+e+1} \binom{v-w+1}{u-v-w+t-e} \binom{u-v-e-1}{u-v-e} \binom{2v-u+e+1}{e} \\ (2) \quad &= (-1)^{v+1} \binom{v-w+1}{t-w} \binom{v+1}{u-v}. \end{aligned}$$

Similarly, if $s < \alpha + \beta$ then the equation $\Phi(-\beta) = 0$ is equivalent to

$$L_2(s, \alpha, \beta, i) = R_2(s, \alpha, \beta, i)$$

with

$$\begin{aligned} L_2 &:= \sum_{l=\beta+1}^{\alpha} \binom{l}{s-\alpha} \binom{l-\beta-1}{i-\beta-1}, \\ R_2 &:= \sum_{j=0}^{\alpha} (-1)^{\alpha+j+1} \binom{j}{2\alpha-s+1} \binom{\alpha+1}{j+1} \binom{s-\alpha-\beta+j}{j-i} + \binom{\alpha+1}{s-\alpha} \binom{\alpha-\beta}{\alpha-i}. \end{aligned}$$

Let us in fact show that

$$L_2(u, v, w, t) = R_2(u, v, w, t)$$

for all $u \geq v \geq t > w \geq 0$. It is easy to verify that

$$L_2(u, t, w, t) = R_2(u, t, w, t),$$

and

$$\begin{aligned}
& R_2(u+1, v+1, w, t) - R_2(u, v, w, t) \\
& \quad - L_2(u+1, v+1, w, t) + L_2(u, v, w, t) \\
& = \frac{u-v}{2v-u+2} \sum_{j=0}^v (-1)^{v+j} \binom{j}{2v-u+1} \binom{v+1}{j} \binom{u-v-w+j}{j-t} \\
& \quad + \frac{u-v}{2v-u+2} \binom{v+1}{u-v} \binom{v-w+1}{t-w} - \binom{v+1}{u-v-1} \binom{u-w+1}{u-v-w+t},
\end{aligned}$$

which is zero by (2). Finally, suppose that $i = \beta$. Then

$$\begin{aligned}
\Phi'_1(-\beta) &= -\sum_{l=0}^{\alpha} \binom{l}{\beta} \left(\binom{s-\alpha-\beta}{s-\alpha} \binom{\partial}{l+\alpha-s} + \binom{s-\alpha-\beta}{s-\alpha} \binom{\partial}{l+\alpha-s} \right), \\
\Phi_2(-\beta) &= (-1)^{\beta+1} \binom{\beta-1}{s-\alpha-1}, \\
\Phi'_3(-\beta) &= \sum_{j=0}^{\alpha} (-1)^{\alpha+\beta+j+1} \binom{j}{2\alpha-s+1} \binom{\alpha+1}{j+1} \left(\binom{s-\alpha-\beta+j}{j-\beta} \binom{\partial}{s-\alpha} - \binom{s-\alpha-\beta+j}{s-\alpha} h_{\beta} \right), \\
\Phi'_4(-\beta) &= (-1)^{\beta} \binom{\alpha+1}{s-\alpha} (h_{\alpha-\beta} - h_{\beta}),
\end{aligned}$$

where $h_t = 1 + \dots + \frac{1}{t}$ is the harmonic number for $t \in \mathbb{Z}_{>0}$ and $h_t = 0$ for $t \in \mathbb{Z}_{\leq 0}$. Since

$$\begin{aligned}
& \sum_{j=0}^{\alpha} (-1)^{\alpha+\beta+j+1} \binom{j}{2\alpha-s+1} \binom{\alpha+1}{j+1} \binom{z+s-\alpha+j}{s-\alpha} \\
& = (-1)^{\alpha+\beta} \left(\binom{z+s-\alpha-1}{s-\alpha} - \binom{s-2\alpha-2}{s-\alpha} \right),
\end{aligned}$$

we can simplify $\Phi'_3(-\beta)$ to

$$\Phi'_3(-\beta) = \sum_{j=0}^{\alpha} (-1)^{\alpha} \binom{j}{2\alpha-s+1} \binom{\alpha+1}{j+1} \binom{\alpha-s-1}{j-\beta} - (-1)^{\beta} \left(\binom{\beta}{s-\alpha} - \binom{\alpha+1}{s-\alpha} \right) h_{\beta}.$$

The equation $\Phi(-\beta) = 0$ is therefore equivalent to

$$L_3(s, \alpha, \beta) = R_3(s, \alpha, \beta)$$

with

$$\begin{aligned}
L_3 &:= \beta \Phi'_1(-\beta), \\
R_3 &:= (s - \alpha - \beta)(\Phi'_3(-\beta) + \Phi'_4(-\beta)) - \Phi_2(-\beta).
\end{aligned}$$

Let us show that $L_3(u, v, w) = R_3(u, v, w)$ for all $u > v \geq w > 0$. For $v = w$ this is

$$(-1)^u w \left(\binom{w-1}{u-w} \binom{\partial}{2w-u} - \binom{w-1}{u-w} \binom{\partial}{2w-u} \right) = (2w-u) \binom{w}{u-w} h_w + \binom{w-1}{u-w-1}.$$

If $u > 2w$ then both sides are zero, if $u = 2w$ then both sides are 1, and if $2w > u > w$ then both sides are $w(h_{w-1} + \frac{1}{2w-u})$. Thus all we need to do is show that

$$R_3(u+1, v+1, w) - R_3(u, v, w) - L_3(u+1, v+1, w) + L_3(u, v, w) = 0$$

for all $u > v \geq w > 0$. By using the equation

$$\sum_j (-1)^j \binom{j}{2v-u+1} \binom{v+1}{j} \binom{z+u-v-w+j}{j-w} = (-1)^{v+1} \binom{v+1}{u-v} \binom{z+v-w+1}{v-w+1}$$

we can get rid of the sum \sum_j and, after some simple algebraic manipulations, simplify this to

$$\binom{v+1}{w} \left(\binom{u-v-w}{u-v} \binom{\partial}{2v-u+1} + \binom{u-v-w}{u-v} \binom{\partial}{2v-u+1} \right) = \frac{(-1)^{w+1} (u-v-w)}{w(v-w+1)} \binom{v+1}{u-v}.$$

We omit the full tedious details and just mention that since we are able to get rid of the sums \sum_l and \sum_j the aforementioned algebraic manipulations amount to simple cancellations. If $u \geq v + w$ then

$$\begin{aligned} \binom{v+1}{w} & \left(\binom{u-v-w}{u-v} \binom{\partial}{\binom{v-w}{2v-u+1}} + \binom{u-v-w}{u-v} \binom{\partial}{\binom{v-w}{2v-u+1}} \right) \\ &= \frac{(-1)^{w+1}(v+1)!(v-w)!(u-v-w)!(w-1)!}{w!(v-w+1)!(2v-u+1)!(u-v-w-1)!(u-w)!} \\ &= \frac{(-1)^{w+1}(u-v-w)(v+1)!}{w(v-w+1)(u-v)!(2v-u+1)!} = \frac{(-1)^{w+1}(u-v-w)}{w(v-w+1)} \binom{v+1}{u-v}, \end{aligned}$$

and if $u < v + w$ then

$$\begin{aligned} \binom{v+1}{w} & \left(\binom{u-v-w}{u-v} \binom{\partial}{\binom{v-w}{2v-u+1}} + \binom{u-v-w}{u-v} \binom{\partial}{\binom{v-w}{2v-u+1}} \right) \\ &= \frac{(-1)^w(v+1)!(w-1)!(v+w-u)!(v-w)!}{w!(v-w+1)!(u-v)!(v+w-u-1)!(2v-u+1)!} \\ &= \frac{(-1)^{w+1}(u-v-w)(v+1)!}{w(v-w+1)(u-v)!(2v-u+1)!} = \frac{(-1)^{w+1}(u-v-w)}{w(v-w+1)} \binom{v+1}{u-v}. \end{aligned}$$

We have finally shown that if $i \in \{\beta, \dots, \alpha\}$ then

$$\mathbf{r}_i(C_0, \dots, C_\alpha)^T = 0.$$

■

4. COMPUTING $\overline{\Theta}_{k,a}$

Throughout the proof we use the results from section 9 of [Ars21], which we reproduce here without proofs for convenience.

Lemma 15. *Suppose that $\alpha \in \{0, \dots, \nu - 1\}$.*

(1) *We have*

$$\begin{aligned} (T - a) & (1 \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^n x^{\alpha-n} y^{r-np-\alpha}) \\ &= \sum_j (-1)^j \binom{n}{j} p^{j(p-1)+\alpha} \binom{1}{0} \bullet_{KZ, \overline{\mathbb{Q}}_p} x^{j(p-1)+\alpha} y^{r-j(p-1)-\alpha} \\ &\quad - a \sum_j (-1)^j \binom{n-\alpha}{j} \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^\alpha x^{j(p-1)} y^{r-j(p-1)-\alpha(p+1)} + O(p^n). \end{aligned}$$

(2) *The submodule $\text{im}(T - a) \subset \text{ind}_{KZ}^G \widetilde{\Sigma}_r$ contains*

$$\begin{aligned} \sum_i & \left(\sum_{l=\beta-\gamma}^{\beta} C_l \binom{r-\beta+l}{i(p-1)+l} \right) \bullet_{KZ, \overline{\mathbb{Q}}_p} x^{i(p-1)+\beta} y^{r-i(p-1)-\beta} \\ &+ O(ap^{-\beta+v_C} + p^{p-1}) \end{aligned}$$

for all $0 \leq \beta \leq \gamma < \nu$ and all families $\{C_l\}_{l \in \mathbb{Z}}$ of elements of \mathbb{Z}_p , where

$$v_C = \min_{\beta-\gamma \leq l \leq \beta} (v_p(C_l) + l).$$

The $O(ap^{-\beta+v_C} + p^{p-1})$ term is equal to $O(p^{p-1})$ plus

$$-\frac{ap^{-\beta}}{p-1} \sum_{l=\beta-\gamma}^{\beta} C_l p^l \sum_{0 \neq \mu \in \mathbb{F}_p} [\mu]^{-l} \binom{p}{0} \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^n x^{\beta-l-n} y^{r-np-\beta+l}.$$

Lemma 16. Suppose that $\alpha \in \mathbb{Z}$ and $v \in \mathbb{Q}$ are such that

$$\begin{aligned} \alpha &\in \{0, \dots, \nu - 1\}, \\ v &\leq v_p(\vartheta_\alpha(D_\bullet)), \\ v' &:= \min\{v_p(a) - \alpha, v\} \leq v_p(\vartheta_w(D_\bullet)) \text{ for } \alpha < w < 2\nu - \alpha, \\ v' &< v_p(\vartheta_w(D_\bullet)) \text{ for } 0 \leq w < \alpha. \end{aligned}$$

If, for $j \in \mathbb{Z}$,

$$\Delta_j := (-1)^{j-1}(1-p)^{-\alpha} \binom{\alpha}{j-1} \vartheta_\alpha(D_\bullet),$$

then $v \leq v_p(\vartheta_\alpha(\Delta_\bullet)) \leq v_p(\Delta_j)$ for all $j \in \mathbb{Z}$, and

$$\begin{aligned} \sum_i (\Delta_i - D_i) \bullet_{KZ, \overline{\mathbb{Q}}_p} x^{i(p-1)+\alpha} y^{r-i(p-1)-\alpha} \\ = [\alpha \leq s] (-1)^{n+1} D_{\frac{r-s}{p-1}} \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^n x^{r-np-s+\alpha} y^{s-\alpha-n} \\ - D_0 \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^n x^{\alpha-n} y^{r-np-\alpha} \\ + E \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^{\alpha+1} h + F \bullet_{KZ, \overline{\mathbb{Q}}_p} h' + \text{ERR}_1 + \text{ERR}_2, \end{aligned}$$

for some ERR_1 and ERR_2 such that

$$\text{ERR}_1 \in \text{im}(T - a) \text{ and } \text{ERR}_2 = O(p^{\nu - v_p(a) + v} + p^{\nu - \alpha}),$$

some polynomials h and h' , and some $E, F \in \overline{\mathbb{Q}}_p$ such that $v_p(E) \geq v'$ and $v_p(F) > v'$.

Lemma 17. Let $\{C_l\}_{l \in \mathbb{Z}}$ be any family of elements of \mathbb{Z}_p . Suppose that $\alpha \in \{0, \dots, \nu - 1\}$ and $v \in \mathbb{Q}$, and suppose that the constants

$$D_i := [i = 0] C_{-1} + [0 < i(p-1) < r - 2\alpha] \sum_{l=0}^{\alpha} C_l \binom{r-\alpha+l}{i(p-1)+l}$$

satisfy the conditions of lemma 16, i.e.

$$\begin{aligned} v &\leq v_p(\vartheta_\alpha(D_\bullet)), \\ v' &:= \min\{v_p(a) - \alpha, v\} \leq v_p(\vartheta_w(D_\bullet)) \text{ for } \alpha < w < 2\nu - \alpha, \\ v' &< v_p(\vartheta_w(D_\bullet)) \text{ for } 0 \leq w < \alpha. \end{aligned}$$

Moreover, suppose that C_0 is a unit. Let

$$\vartheta' := (1-p)^{-\alpha} \vartheta_\alpha(D_\bullet) - C_{-1}.$$

Suppose that $v_p(C_{-1}) \geq v_p(\vartheta')$.

- (1) If $v_p(\vartheta') \leq v'$ then there is some element $\text{gen}_1 \in \mathcal{I}_a$ that represents a generator of \widehat{N}_α .
- (2) If $v_p(a) - \alpha < v$ then there is some element $\text{gen}_2 \in \mathcal{I}_a$ that represents a generator of a finite-codimensional submodule of

$$T \left(\text{ind}_{KZ}^G \text{quot}(\alpha) \right) = T \left(\widehat{N}_\alpha / \text{ind}_{KZ}^G \text{sub}(\alpha) \right),$$

where T denotes the endomorphism of $\text{ind}_{KZ}^G \text{quot}(\alpha)$ corresponding to the double coset of $\begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}$.

Let us now prove the following additional results.

Lemma 18. *Let $\{C_l\}_{l \in \mathbb{Z}}$ be any family of elements of \mathbb{Z}_p . Suppose that $\alpha \in \mathbb{Z}$ and $v \in \mathbb{Q}$ and the constants*

$$D_i := [i = 0]C_{-1} + [0 < i(p-1) < r-2\alpha] \sum_{l=0}^{\alpha} C_l \binom{r-\alpha+l}{i(p-1)+l}$$

are such that

$$\begin{aligned} \alpha &\in \{0, \dots, \nu-1\}, \\ v &\leq v_p(\vartheta_\alpha(D_\bullet)), \\ v' &:= \min\{v_p(a) - \alpha, v\} < v_p(\vartheta_w(D_\bullet)) \text{ for } 0 \leq w < \alpha. \end{aligned}$$

Let

$$\vartheta' := (1-p)^{-\alpha} \vartheta_\alpha(D_\bullet) - C_{-1}.$$

Then $\text{im}(T - a)$ contains

$$(3) \quad \begin{aligned} &(\vartheta' + C_{-1}) \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^\alpha x^{p-1} y^{r-\alpha(p+1)-p+1} + C_{-1} \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^n x^{\alpha-n} y^{r-np-\alpha} \\ &+ \sum_{\xi=\alpha+1}^{2\nu-\alpha-1} E_\xi \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^\xi h_\xi + F \bullet_{KZ, \overline{\mathbb{Q}}_p} h' + H, \end{aligned}$$

for some h_ξ, h', E_ξ, F, H such that

- (1) $E_\xi = \vartheta_\xi(D_\bullet) + \mathcal{O}(p^v) \cup \mathcal{O}(\vartheta_{\alpha+1}(D_\bullet)) \cup \dots \cup \mathcal{O}(\vartheta_{\xi-1}(D_\bullet))$,
- (2) *if $\xi + \alpha - s \leq 2\xi - s \neq 0$ then the reduction modulo \mathfrak{m} of $\theta^\xi h_\xi$ generates N_ξ ,*
- (3) $v_p(F) > v'$, and
- (4) $H = \mathcal{O}(p^{\nu-v_p(a)+v} + p^{\nu-\alpha})$ and if $v_p(a) - \alpha < v$ then
 $\frac{1-p}{ap-\alpha} H = g \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^n x^{\alpha-n} y^{r-np-\alpha} + \mathcal{O}(p^{\nu-v_p(a)})$
with

$$g = \sum_{\lambda \in \mathbb{F}_p} C_0 \left(\begin{smallmatrix} p & [\lambda] \\ 0 & 1 \end{smallmatrix} \right) + A \left(\begin{smallmatrix} p & 0 \\ 0 & 1 \end{smallmatrix} \right) + [r \equiv_{p-1} 2\alpha] B \left(\begin{smallmatrix} 0 & 1 \\ p & 0 \end{smallmatrix} \right),$$

where

$$A = -C_{-1} + \sum_{l=1}^{\alpha} C_l \binom{r-\alpha+l}{l}$$

and

$$B = \sum_{l=0}^{\alpha} C_l \binom{r-\alpha+l}{s-\alpha}.$$

Proof. This lemma is essentially shown under a stronger hypothesis as lemma 17.

The stronger hypothesis consists of the three extra conditions that $v_p(\vartheta_w(D_\bullet)) \geq \min\{v_p(a) - \alpha, v\}$ for all $\alpha < w < 2\nu - \alpha$, that $C_0 \in \mathbb{Z}_p^\times$, and that $v_p(C_{-1}) \geq v_p(\vartheta')$. These extra conditions are not used in the actual construction of the element in (3), rather they are there to ensure that $v_p(E_\xi) \geq \min\{v_p(a) - \alpha, v\}$ for all $\alpha < \xi < 2\nu - \alpha$, that the coefficient of $\left(\begin{smallmatrix} p & [\lambda] \\ 0 & 1 \end{smallmatrix} \right)$ in g is invertible, and that we get an integral element once we divide the element

$$(\vartheta' + C_{-1}) \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^\alpha x^{p-1} y^{r-\alpha(p+1)-p+1} + C_{-1} \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^n x^{\alpha-n} y^{r-np-\alpha}$$

by ϑ' . Therefore we still get the existence of the element in (3) without these extra conditions, and to complete the proof of lemma 18 we need to verify the properties of h_ξ, E_ξ, F, H, A , and B claimed in (1), (2), (3), and (4). The h_ξ and E_ξ come from the proof of lemma 16, and $E_\xi \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^\xi h_\xi$ is

$$X_\xi \bullet_{KZ, \overline{\mathbb{Q}}_p} \sum_{\lambda \neq 0} [-\lambda]^{r-\alpha-\xi} \left(\begin{smallmatrix} 1 & [\lambda] \\ 0 & 1 \end{smallmatrix} \right) (-\theta)^n x^{r-np-\xi} y^{\xi-n},$$

with the notation for X_ξ from the proof of lemma 16. Let $E_\xi = (-1)^{\xi+1}X_\xi$. Then condition (1) is satisfied directly from the definition of X_ξ . Let

$$h_\xi = (-1)^{\xi+1} \sum_{\lambda \neq 0} [-\lambda]^{r-\alpha-\xi} \left(\begin{smallmatrix} 1 & [\lambda] \\ 0 & 1 \end{smallmatrix} \right) (-\theta)^n x^{r-np-\xi} y^{\xi-n}.$$

This reduces modulo \mathfrak{m} to the element

$$(-1)^\xi \sum_{\lambda \neq 0} [-\lambda]^{r-\alpha-\xi} \left(\begin{smallmatrix} 1 & [\lambda] \\ 0 & 1 \end{smallmatrix} \right) Y^{\underline{2\xi-r}} = (-1)^{s-\alpha+1} \left(\begin{smallmatrix} 2\xi-s \\ \xi+\alpha-s \end{smallmatrix} \right) X^{\underline{\xi+\alpha-s}} Y^{\underline{\xi-\alpha}}$$

of

$$\sigma_{\underline{2\xi-r}}(r-\xi) \cong I_{r-2\xi}(\xi) / \sigma_{\underline{r-2\xi}}(\xi) = \text{quot}(\xi).$$

This element is non-trivial and generates N_ξ if $\xi + \alpha - s \leq 2\xi - s \neq 0$, since then $X^{\underline{\xi+\alpha-s}} Y^{\underline{\xi-\alpha}}$ generates N_ξ . This verifies condition (2). Condition (3) follows from the assumption $v' < v_p(\vartheta_w(D_\bullet))$ for $0 \leq w < \alpha$, as in the proof of lemma 16. Finally, condition (4) follows from the description of the error term in lemma 15, as in the proof of lemma 17. \blacksquare

Corollary 19. *Let $\{C_l\}_{l \in \mathbb{Z}}$ be any family of elements of \mathbb{Z}_p . Suppose that $\alpha \in \{0, \dots, \nu-1\}$ and $v \in \mathbb{Q}$, and suppose that the constants*

$$D_i := [i=0]C_{-1} + [0 < i(p-1) < r-2\alpha] \sum_{l=0}^{\alpha} C_l \left(\begin{smallmatrix} r-\alpha+l \\ i(p-1)+l \end{smallmatrix} \right)$$

are such that

$$\begin{aligned} v &\leq v_p(\vartheta_\alpha(D_\bullet)), \\ v' &:= \min\{v_p(a) - \alpha, v\} \leq v_p(\vartheta_w(D_\bullet)) \text{ for } \alpha < w < 2\nu - \alpha, \\ v' &< v_p(\vartheta_w(D_\bullet)) \text{ for } 0 \leq w < \alpha. \end{aligned}$$

Suppose also that $v_p(a) \notin \mathbb{Z}$. Let

$$\begin{aligned} \vartheta' &:= (1-p)^{-\alpha} \vartheta_\alpha(D_\bullet) - C_{-1}, \\ \check{C} &:= -C_{-1} + \sum_{l=1}^{\alpha} C_l \left(\begin{smallmatrix} r-\alpha+l \\ l \end{smallmatrix} \right). \end{aligned}$$

If \star then $*$ is trivial modulo \mathcal{I}_a , for each of the following pairs

$$(\star, *) = (\text{condition, representation}).$$

- (1) $\left(v_p(\vartheta') \leq \min\{v_p(C_{-1}), v'\}, \hat{N}_\alpha \right).$
- (2) $\left(v = v_p(C_{-1}) < \min\{v_p(\vartheta'), v_p(a) - \alpha\}, \text{ind}_{KZ}^G \text{sub}(\alpha) \right).$
- (3) $\left(v_p(a) - \alpha < v \leq v_p(C_{-1}) \ \& \ \check{C} \in \mathbb{Z}_p^\times \ \& \ C_0 \notin \mathbb{Z}_p^\times \ \& \ 2\alpha - r > 0, \hat{N}_\alpha \right).$
- (4) $\left(v_p(a) - \alpha < v \leq v_p(C_{-1}) \ \& \ \check{C} \in \mathbb{Z}_p^\times, \text{ind}_{KZ}^G \text{quot}(\alpha) \right).$
- (5) $\left(v_p(a) - \alpha < v \leq v_p(C_{-1}) \ \& \ C_0 \in \mathbb{Z}_p^\times, \mathbf{r}_1 \right), \text{ where}$

$$\mathbf{r}_1$$

is a finite-codimensional submodule of

$$T(\text{ind}_{KZ}^G \text{quot}(\alpha)).$$

Proof. There is one extra condition imposed in addition to the conditions from lemma 18: that

$$v' := \min\{v_p(a) - \alpha, v\} \leq v_p(\vartheta_w(D_\bullet)) \text{ for } \alpha < w < 2\nu - \alpha,$$

and it ensures that $v_p(E_\xi) \geq v'$ for all $\alpha < \xi < 2\nu - \alpha$. Lemma 18 implies that the element in (3) is in $\text{im}(T - a)$. Let us call this element γ .

(1) The condition $v_p(\vartheta') \leq \min\{v_p(C_{-1}), v'\}$ ensures that if we divide γ by ϑ' then the resulting element reduces modulo \mathfrak{m} to a representative of a generator of \widehat{N}_α .

(2) The condition $v = v_p(C_{-1}) < \min\{v_p(\vartheta'), v_p(a) - \alpha\}$ ensures that if we divide γ by C_{-1} then the resulting element reduces modulo \mathfrak{m} to a representative of a generator of $\text{ind}_{KZ}^G \text{sub}(\alpha)$.

(3, 4, 5) The condition $v_p(a) - \alpha < v \leq v_p(C_{-1})$ ensures that the term with the dominant valuation in (3) is H , so we can divide γ by $ap^{-\alpha}$ and obtain the element $L + \mathcal{O}(p^{\nu - v_p(a)})$, where L is defined by

$$L := \left(\sum_{\lambda \in \mathbb{F}_p} C_0 \left(\begin{smallmatrix} p & [\lambda] \\ 0 & 1 \end{smallmatrix} \right) + A \left(\begin{smallmatrix} p & 0 \\ 0 & 1 \end{smallmatrix} \right) + [r \equiv_{p-1} 2\alpha] B \left(\begin{smallmatrix} 0 & 1 \\ p & 0 \end{smallmatrix} \right) \right) \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^n x^{\alpha - n} y^{r - np - \alpha}$$

with A and B as in lemma 18. This element L is in $\text{im}(T - a)$, and it reduces modulo \mathfrak{m} to a representative of

$$\left(\sum_{\lambda \in \mathbb{F}_p} C_0 \left(\begin{smallmatrix} p & [\lambda] \\ 0 & 1 \end{smallmatrix} \right) + A \left(\begin{smallmatrix} p & 0 \\ 0 & 1 \end{smallmatrix} \right) + [r \equiv_{p-1} 2\alpha] (-1)^{r - \alpha} B \left(\begin{smallmatrix} 1 & 0 \\ 0 & p \end{smallmatrix} \right) \right) \bullet_{KZ, \overline{\mathbb{F}}_p} X^{\underline{2\alpha - r}}.$$

As shown in the proof of lemma 17, if $C_0 \in \mathbb{Z}_p^\times$ then this element always generates a finite-codimensional submodule of

$$T(\text{ind}_{KZ}^G \text{quot}(\alpha)),$$

and if additionally $A \neq 0$ (over \mathbb{F}_p) then in fact we have the stronger conclusion that it generates

$$\text{ind}_{KZ}^G \text{quot}(\alpha).$$

Suppose on the other hand that $C_0 = \mathcal{O}(p)$ and $A \in \mathbb{Z}_p^\times$. In that case we assume that $\underline{2\alpha - r} > 0$ and therefore the reduction modulo \mathfrak{m} of L represents a generator of \widehat{N}_α . ■

5. PROOF OF THEOREM 2

We prove theorem 2 by proving nine propositions which give just enough information to conclude that $\overline{\Theta}_{k,a}$ is irreducible, but not enough to classify it fully.

We assume that

$$r = s + \beta(p - 1) + u_0 p^t + \mathcal{O}(p^{t+1})$$

for some $\beta \in \{0, \dots, p - 1\}$ and $u_0 \in \mathbb{Z}_p^\times$ and $t \in \mathbb{Z}_{>0}$, and we write $\eta = u_0 p^t$. As the main result of [Ars21] implies theorem 2 for $s \geq 2\nu$, we may assume that

$$s \in \{2, \dots, 2\nu - 2\}.$$

Recall also that we assume $\nu - 1 < v_p(a) < \nu$ for some $\nu \in \{1, \dots, \frac{p-1}{2}\}$, and that $k > p^{100}$ (and consequently $r > p^{99}$).

We now give a list of nine propositions, and show that their union implies theorem 2.

Proposition 20. *If $\alpha < \frac{s}{2}$ then*

$$\begin{cases} \widehat{N}_\alpha & \text{if } \beta \in \{0, \dots, \alpha - 1\} \text{ and } \alpha > v_p(a) - t, \\ \text{ind}_{KZ}^G \text{sub}(\alpha) & \text{otherwise} \end{cases}$$

is trivial modulo \mathcal{I}_a .

Proposition 21. *If $\frac{s}{2} \leq \alpha < s$ and $\beta \notin \{1, \dots, \alpha + 1\}$ then*

$$\widehat{N}_\alpha$$

is trivial modulo \mathcal{I}_a .

Proposition 22. *If $0 < \alpha < \frac{s}{2}$ then*

$$\begin{cases} T(\text{ind}_{KZ}^G \text{quot}(\alpha)) & \text{if } \beta \in \{0, \dots, \alpha\} \text{ and } \alpha > v_p(a) - t, \\ \widehat{N}_{s-\alpha} & \text{if } \beta \in \{0, \dots, \alpha\} \text{ and } \alpha < v_p(a) - t, \\ \widehat{N}_\alpha & \text{if } \beta \in \{\alpha + 1, \dots, s - \alpha\}, \\ \widehat{N}_{s-\alpha} & \text{if } \beta > s - \alpha \end{cases}$$

is trivial modulo \mathcal{I}_a .

Proposition 23. *If $\frac{s}{2} \leq \alpha < s$ and $(\alpha, \beta) \neq (\frac{s}{2}, \frac{s}{2} + 1)$ then*

$$\begin{cases} T(\text{ind}_{KZ}^G \text{quot}(\alpha)) & \text{if } \beta \in \{1, \dots, s - \alpha\} \text{ and } s - \alpha > v_p(a) - t, \\ T(\text{ind}_{KZ}^G \text{quot}(\alpha)) & \text{if } \beta \in \{s - \alpha + 1, \dots, \alpha\} \text{ and } \alpha > v_p(a) - t, \\ \widehat{N}_\alpha & \text{otherwise} \end{cases}$$

is trivial modulo \mathcal{I}_a .

Proposition 24. *If $\alpha \geq s$ then*

$$\begin{cases} T(\text{ind}_{KZ}^G \text{quot}(\alpha)) & \text{if } \alpha = \max\{\nu - t - 1, \beta - 1\}, \\ \widehat{N}_\alpha & \text{otherwise} \end{cases}$$

is trivial modulo \mathcal{I}_a .

Proposition 25. *If $\beta \in \{1, \dots, \frac{s}{2} - 1\}$ and $t > \nu - \frac{s}{2} - 2$ then*

$$\widehat{N}_{s/2+1}$$

is trivial modulo \mathcal{I}_a .

Proposition 26. *If $\beta \in \{1, \dots, \frac{s}{2} - 1\}$ and $t = \nu - \frac{s}{2}$ then*

$$\widehat{N}_{s/2-1}$$

is trivial modulo \mathcal{I}_a .

Proposition 27. *If $\beta \in \{\frac{s}{2}, \frac{s}{2} + 1\}$ and $t > \nu - \frac{s}{2} - 1$ then*

$$\widehat{N}_{s/2+1}$$

is trivial modulo \mathcal{I}_a .

Proposition 28. *If $\beta = \frac{s}{2} + 1$ and $t = \nu - \frac{s}{2} - 1$ then*

$$\text{ind}_{KZ}^G \text{sub}(\frac{s}{2} + 1)$$

is trivial modulo \mathcal{I}_a .

Proof that propositions 20–28 imply theorem 2. Let us assume that $\overline{\Theta}_{k,a}$ is reducible with the goal of reaching a contradiction. The classification given by theorem 2 in [Ars21] implies that $\overline{\Theta}_{k,a}$ has two infinite-dimensional factors, each of which is a quotient of a representation in the set

$$\{\text{ind}_{KZ}^G \text{sub}(\alpha) \mid 0 \leq \alpha < \nu\} \cup \{\text{ind}_{KZ}^G \text{quot}(\alpha) \mid 0 \leq \alpha < \nu\},$$

and moreover that the following classification is true.

(1) If the two representations are $\text{ind}_{KZ}^G \text{sub}(\alpha_1)$ and $\text{ind}_{KZ}^G \text{sub}(\alpha_2)$ then

$$\alpha_1 + \alpha_2 \equiv_{p-1} s + 1.$$

(2) If the two representations are $\text{ind}_{KZ}^G \text{sub}(\alpha_1)$ and $\text{ind}_{KZ}^G \text{quot}(\alpha_2)$ then

$$\alpha_1 - \alpha_2 \equiv_{p-1} 1.$$

(3) If the two representations are $\text{ind}_{KZ}^G \text{quot}(\alpha_1)$ and $\text{ind}_{KZ}^G \text{quot}(\alpha_2)$ then

$$\alpha_1 + \alpha_2 \equiv_{p-1} s - 1.$$

The facts that

$$\begin{aligned} \alpha_1 + \alpha_2 &\in \{0, \dots, 2\nu - 2\} \subseteq \{0, \dots, p - 3\}, \\ \alpha_1 - \alpha_2 &\in \{1 - \nu, \dots, \nu - 1\} \subseteq \{-\frac{p-3}{2}, \dots, \frac{p-3}{2}\}, \\ s &\in \{2, \dots, 2\nu - 2\} \subseteq \{2, \dots, p - 3\} \end{aligned}$$

imply that the following classification is true as well.

(1) If the two representations are $\text{ind}_{KZ}^G \text{sub}(\alpha_1)$ and $\text{ind}_{KZ}^G \text{sub}(\alpha_2)$ then

$$\alpha_1 + \alpha_2 = s + 1.$$

(2) If the two representations are $\text{ind}_{KZ}^G \text{sub}(\alpha_1)$ and $\text{ind}_{KZ}^G \text{quot}(\alpha_2)$ then

$$\alpha_1 = \alpha_2 + 1.$$

(3) If the two representations are $\text{ind}_{KZ}^G \text{quot}(\alpha_1)$ and $\text{ind}_{KZ}^G \text{quot}(\alpha_2)$ then

$$\alpha_1 + \alpha_2 = s - 1.$$

This classification and propositions 20, 21, 22, 23, and 24 together imply that one of the two representations must be either $\text{ind}_{KZ}^G \text{sub}(\frac{s}{2})$ or $\text{ind}_{KZ}^G \text{quot}(\frac{s}{2})$, and in that case the other representation is either

$$\text{ind}_{KZ}^G \text{sub}(\frac{s}{2} + 1)$$

(which can only happen if $\beta \in \{1, \dots, \frac{s}{2} - 1\}$ and $t > \nu - \frac{s}{2}$ or $\beta \in \{\frac{s}{2}, \frac{s}{2} + 1\}$ and $t > \nu - \frac{s}{2} - 2$), or

$$\text{ind}_{KZ}^G \text{quot}(\frac{s}{2} - 1)$$

(which can only happen if $s = 2$ or $\beta \in \{1, \dots, \frac{s}{2} - 1\}$ and $t = \nu - \frac{s}{2}$). In the latter case if $s = 2$ then either $1 \bullet_{KZ, \overline{\mathbb{Q}}_p} x^2 y^{r-2} \in \mathcal{J}_a$ generates $\text{ind}_{KZ}^G \text{quot}(0)$, or $\nu \leq 2$ in which case $\overline{V}_{k,a}$ is known to be irreducible. Propositions 23, 25, 26, 27, and 28 exclude all of the remaining possibilities. Thus if we assume that $\overline{\Theta}_{k,a}$ is reducible we reach a contradiction, so $\overline{\Theta}_{k,a}$ must be irreducible. ■

Proof of proposition 20. First suppose that $\beta \geq \alpha$. We apply part (2) of corollary 19 with $v = 0$ and

$$C_j = \begin{cases} (-1)^\alpha \binom{s-r}{\alpha} & \text{if } j = -1, \\ 0 & \text{if } j = 0, \\ (-1)^{\alpha-j} \binom{s-\alpha+1}{\alpha-j} & \text{if } j \in \{1, \dots, \alpha\}. \end{cases}$$

Since

$$\binom{s-r}{\alpha} = \binom{\beta}{\alpha} + O(p) \in \mathbb{Z}_p^\times,$$

the two conditions we need to verify are $v_p(\vartheta_w(D_\bullet)) > 0$ for $0 \leq w < \alpha$ and $v_p(\vartheta') > 0$. These two conditions are equivalent to the system of equations

$$(4) \quad \begin{aligned} \sum_{j=1}^{\alpha} (-1)^{\alpha-j} \binom{s-\alpha+1}{\alpha-j} \sum_{i>0} \binom{r-\alpha+j}{i(p-1)+j} \binom{i(p-1)}{w} \\ = (-1)^\alpha ([w = \alpha] - [w = 0]) \binom{s-r}{\alpha} + O(p) \end{aligned}$$

for $0 \leq w \leq \alpha$. Let $F_{w,j}(z, \psi) \in \mathbb{F}_p[z, \psi]$ denote the polynomial defined in lemma 11. Since

$$\sum_{i>0} \binom{r-\alpha+j}{i(p-1)+j} \binom{i(p-1)}{w} = F_{w,j}(r, s)$$

by (c-g), the conclusion of that lemma when evaluated at $z = r$ and $\psi = s$ implies (4). Thus if $\beta \geq \alpha$ then we can apply part (2) of corollary 19 and conclude that $\text{ind}_{KZ}^G \text{sub}(\alpha)$ is trivial modulo \mathcal{I}_a .

Suppose now that $\beta \in \{0, \dots, \alpha-1\}$. If $t > v_p(a) - \alpha$ then the proof of theorem 17 in [Ars21] applies here nearly verbatim since

$$\binom{s-\alpha+1}{\alpha} \in \mathbb{Z}_p^\times,$$

and in fact we can conclude that \widehat{N}_α is trivial modulo \mathcal{I}_a . So let us suppose that $t < v_p(a) - \alpha$. We apply part (2) of corollary 19 with $v = t$ and

$$C_j = \begin{cases} (-1)^\alpha \binom{s-r}{\alpha} & \text{if } j = -1, \\ 0 & \text{if } j = 0, \\ (-1)^{\alpha-j} \binom{s-\alpha+1}{\alpha-j} + pC_j^* & \text{if } j \in \{1, \dots, \alpha\}, \end{cases}$$

for some constants C_1^*, \dots, C_α^* yet to be chosen. Clearly

$$v_p(C_{-1}) = t < v_p(a) - \alpha,$$

and the other conditions that need to be satisfied in order for corollary 19 to be applicable are

$$\begin{aligned} t &< v_p(\vartheta'), \\ t &\leq v_p(\vartheta_w(D_\bullet)) \text{ for } \alpha \leq w < 2\nu - \alpha, \\ t &< v_p(\vartheta_w(D_\bullet)) \text{ for } 0 \leq w < \alpha. \end{aligned}$$

Let us consider the matrix $A = (A_{w,j})_{0 \leq w, j \leq \alpha}$ that has integer entries

$$A_{w,j} = \sum_{0 < i(p-1) < r-2\alpha} \binom{r-\alpha+j}{i(p-1)+j} \binom{i(p-1)}{w}.$$

Then exactly as in the proof of theorem 17 in [Ars21] we can show that

$$A = S + \epsilon N + O(\epsilon p),$$

where

$$S_{w,j} = \sum_{i=1}^{\beta} \binom{s+\beta(p-1)-\alpha+j}{i(p-1)+j} \binom{i(p-1)}{w},$$

$$N_{w,j} = \sum_v (-1)^{w-v} \binom{j+w-v-1}{w-v} \binom{s+\beta(p-1)-\alpha+j}{v}^{\partial} \sum_{i=0}^{\beta} \binom{s+\beta(p-1)-\alpha+j-v}{i(p-1)+j-v}$$

$$- [w=0] \binom{s+\beta(p-1)-\alpha+j}{j}^{\partial}.$$

We still have equation 4 since the constants are the same, and since

$$\binom{s-r}{\alpha} = O(p),$$

we have

$$S(C_0, \dots, C_{\alpha})^T = (O(p), \dots, O(p))^T.$$

Let $B = B_{\alpha}$ be the $(\alpha+1) \times (\alpha+1)$ matrix defined in lemma 6. That lemma implies that B encodes precisely the row operations that transform S into a matrix with zeros outside the rows indexed $1, \dots, \beta$ and such that

$$(BS)_{w,j} = p^{-[j=0]} \binom{s+\beta(p-1)-\alpha+j}{w(p-1)+j}$$

when $w \in \{1, \dots, \beta\}$. We thus have

$$BS(C_0, \dots, C_{\alpha})^T = (0, O(p), \dots, O(p), 0, \dots)^T,$$

where the only entries of the vector on the right that can possibly be non-zero are the ones indexed $1, \dots, \beta$. As in the proof of theorem 17 in [Ars21] we note that S has rank β and therefore we can choose $C_1^*, \dots, C_{\alpha}^*$ in a way that $(C_0, \dots, C_{\alpha})^T \in \ker BS$. Then $\vartheta_w(D_{\bullet}) = O(\epsilon)$ for all w , and the conditions that need to be satisfied are $\vartheta_w(D_{\bullet}) = O(\epsilon p)$ for $0 \leq w < \alpha$ and $\vartheta' = O(\epsilon p)$. These two conditions are equivalent to the single equation

$$A(C_0, \dots, C_{\alpha})^T = (-C_{-1}, 0, \dots, 0, C_{-1}) + O(\epsilon p),$$

which is itself equivalent to

$$BN(C_0, \dots, C_{\alpha})^T$$

$$= (0, -\binom{\alpha}{1}(C_{-1}\epsilon^{-1}), \dots, (-1)^{\alpha} \binom{\alpha}{\alpha}(C_{-1}\epsilon^{-1}))^T + BSv + O(p)$$

for some v . Thus, if \bar{R} is the $\alpha \times \alpha$ matrix over \mathbb{F}_p obtained from $\bar{B}\bar{N}$ by replacing the rows indexed $1, \dots, \beta$ with the corresponding rows of $\bar{B}\bar{S}$ and then discarding the zeroth row and the zeroth column, the condition that needs to be satisfied is equivalent to the claim that

$$(-1 - [1 \leq \beta]) \binom{\alpha}{1}, \dots, (-1)^{\alpha} (1 - [\alpha \leq \beta]) \binom{\alpha}{\alpha})^T$$

is in the image of \bar{R} (since $C_0 = O(p)$ and $C_{-1}\epsilon^{-1} \in \mathbb{Z}_p^{\times}$). This is indeed the case since \bar{R} is the lower right $\alpha \times \alpha$ submatrix of the matrix \bar{Q} defined in the proof of theorem 17 in [Ars21] (where it is shown that \bar{Q} is equal to the matrix M from lemma 9) and is therefore upper triangular with units on the diagonal. Thus we can apply part (2) of corollary 19 with $v = t$ and conclude that $\text{ind}_{KZ}^G \text{sub}(\alpha)$ is trivial modulo \mathcal{I}_a . ■

Proof of proposition 21. Let us define $C_{-1}(z), \dots, C_\alpha(z) \in \mathbb{Z}_p[z]$ as

$$C_j(z) = \begin{cases} \binom{s-z-1}{\alpha+1} & \text{if } j = -1, \\ \left(\binom{\alpha}{s-\alpha-1}\right)^{-1} \frac{s-z}{\alpha+1} & \text{if } j = 0, \\ \frac{(-1)^{j+1}}{j+1} \binom{s-\alpha-1}{\alpha-j} (z-\alpha) & \text{if } j \in \{1, \dots, \alpha\}. \end{cases}$$

We apply part (1) of corollary 19 with $v = 0$ and

$$(C_{-1}, C_0, \dots, C_\alpha) = (C_{-1}(r), C_0(r), \dots, C_\alpha(r)).$$

The two conditions we need to verify are $v_p(\vartheta_w(D_\bullet)) > 0$ for $0 \leq w < \alpha$ and $v_p(\vartheta') = 0$. These two conditions follow from the system of equations

$$(5) \quad \sum_{j=0}^{\alpha} C_j \sum_{0 < i(p-1) < r-2\alpha} \binom{r-\alpha+j}{i(p-1)+j} \binom{i(p-1)}{w} = -[w=0] \binom{s-r-1}{\alpha+1} + O(p)$$

for $0 \leq w \leq \alpha$. Let $F_{w,j}(z) \in \mathbb{F}_p[z]$ denote the polynomial

$$\sum_v (-1)^{w-v} \binom{j+w-v-1}{w-v} \binom{z-\alpha+j}{v} \binom{s-\alpha+j-v}{j-v} - \binom{z-\alpha+j}{j} \binom{0}{w} - \binom{z-\alpha+j}{s-\alpha} \binom{z-s}{w}.$$

By (c-g),

$$\sum_{0 < i(p-1) < r-2\alpha} \binom{r-\alpha+j}{i(p-1)+j} \binom{i(p-1)}{w} = F_{w,j}(r),$$

so the conclusion of lemma 10 evaluated at $z = r$ implies (5). Thus we can apply part (1) of corollary 19 and conclude that \widehat{N}_α is trivial modulo \mathcal{I}_a . ■

Proof of proposition 22. First let us assume that $\beta \in \{0, \dots, \alpha\}$. If we attempt to copy the proof of theorem 17 in [Ars21] in this setting, the one place where we run into problems is that some entries of the extended associated matrix N are not integers (i.e. when we extend the number of rows in A , S , and N to $2\nu - \alpha$ by defining $A_{w,j}$, $S_{w,j}$, and $N_{w,j}$ with the same equations used for the first $\alpha + 1$ rows, we get entries which are not integers). To be more specific, the equation for $N_{w,0}$ in this setting is

$$pN_{w,0} = \binom{s+\beta(p-1)-\alpha}{w}^\partial \sum_{i>0} \binom{s+\beta(p-1)-\alpha-w}{i(p-1)-w} + O(p),$$

where the second term is $O(p)$ because it is still true that

$$\sum_{i>0} \binom{r-\alpha-w}{i(p-1)-w} - \sum_{i>0} \binom{s+\beta(p-1)-\alpha-w}{i(p-1)-w} = O(\epsilon p).$$

On the other hand,

$$\begin{aligned} \sum_{i>0} \binom{s+\beta(p-1)-\alpha-w}{i(p-1)-w} &= \sum_{l=0}^w (-1)^l \binom{w}{l} \sum_{i>0} \binom{s+\beta(p-1)-\alpha-l}{i(p-1)} \\ &= (-1)^{s-\alpha} \binom{w}{s-\alpha} + O(p). \end{aligned}$$

So $A_{w,0} = S_{w,0} + O(\epsilon)$ is integral if $w < s - \alpha$ and

$$A_{w,0} = S_{w,0} + (-1)^{s-\alpha} \binom{w}{s-\alpha} \binom{s-\alpha-\beta}{w}^\partial \epsilon p^{-1} + O(\epsilon)$$

if $w \geq s - \alpha$. Note that $\beta \in \{0, \dots, \alpha\}$ and $s > 2\alpha$ by assumption, so $S_{w,0}$ is still always integral, and if $s - \alpha \leq w < 2\nu - \alpha$ then

$$\binom{s-\alpha-\beta}{w}^\partial = \frac{(-1)^{s-\alpha-\beta-w+1}}{w \binom{w-1}{s-\alpha-\beta}} \in \mathbb{Z}_p^\times.$$

What this means is that if we proceed with the proof of theorem 17 in [Ars21] and apply lemma 18 with the constants $(C_{-1}, C_0, \dots, C_\alpha)$ constructed there such that C_0 is a unit, then we obtain an element

$$(\vartheta' + C_{-1}) \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^\alpha x^{p-1} y^{r-\alpha(p+1)-p+1} + C_{-1} \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^n x^{\alpha-n} y^{r-np-\alpha} \\ + \sum_{\xi=\alpha+1}^{2\nu-\alpha-1} E_\xi \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^\xi h_\xi + F \bullet_{KZ, \overline{\mathbb{Q}}_p} h' + H$$

which is in $\text{im}(T - a)$ and is such that

$$v_p(C_{-1}) = v_p(\vartheta') = t + 1, \\ v_p(E_\xi) \geq t + 1 \text{ for } \alpha + 1 \leq \xi < s - \alpha, \\ v_p(F) > t + 1,$$

and with H as in lemma 18. However, $v_p(E_{s-\alpha}) = t$ and $v_p(E_\xi) \geq t$ for $\xi > s - \alpha$. Therefore if $t > v_p(a) - \alpha$ then the dominant term is H and we can conclude that a submodule of finite codimension in $T(\text{ind}_{KZ}^G \text{quot}(\alpha))$ is trivial modulo \mathcal{J}_a , and if $t < v_p(a) - \alpha$ then the dominant term is

$$E_{s-\alpha} \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^{s-\alpha} h_{s-\alpha}$$

and hence $\widehat{N}_{s-\alpha}$ is trivial modulo \mathcal{J}_a by part (2) of lemma 18.

Now let us assume that $\beta > \alpha$. We use the constants constructed in the second bullet point of the proof of theorem 17 in [Ars21], and we apply lemma 18. This gives an element

$$\vartheta' \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^\alpha x^{p-1} y^{r-\alpha(p+1)-p+1} \\ + \sum_{\xi=\alpha+1}^{2\nu-\alpha-1} E_\xi \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^\xi h_\xi + F \bullet_{KZ, \overline{\mathbb{Q}}_p} h' + H$$

which is in $\text{im}(T - a)$ and is such that

$$v_p(\vartheta') = 1, \\ v_p(E_\xi) \geq 1 \text{ for } \alpha + 1 \leq \xi < s - \alpha, \\ v_p(F) > 1, \\ v_p(E_{s-\alpha}) = v_p((r - \alpha)_{s-\alpha}),$$

and with H as in lemma 18. This time the dominant term is either

$$\vartheta' \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^\alpha x^{p-1} y^{r-\alpha(p+1)-p+1}$$

or

$$E_{s-\alpha} \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^{s-\alpha} h_{s-\alpha}$$

depending on whether $\beta \in \{\alpha + 1, \dots, s - \alpha\}$ or $\beta > s - \alpha$. Thus in the former case \widehat{N}_α is trivial modulo \mathcal{J}_a , and in the latter case $\widehat{N}_{s-\alpha}$ is trivial modulo \mathcal{J}_a . \blacksquare

Proof of proposition 23. By proposition 21 we may assume that $\beta \notin \{1, \dots, \alpha + 1\}$, and by proposition 22 we may assume that $\beta \neq \alpha + 1$. If $\alpha \neq \frac{s}{2}$ and $\beta \in \{1, \dots, s - \alpha\}$ and $s - \alpha < v_p(a) - t$ then the claim follows from proposition 22. Thus it is enough to show that if $\beta \in \{1, \dots, \alpha\}$ then

$$\begin{cases} T(\text{ind}_{KZ}^G \text{quot}(\alpha)) & \text{if } \alpha > v_p(a) - t, \\ \widehat{N}_\alpha & \text{if } \alpha < v_p(a) - t \end{cases}$$

is trivial modulo \mathcal{I}_a . If $\alpha < v_p(a) - t$ we apply part (1) of corollary 19, and if $\alpha > v_p(a) - t$ we apply part (5) of corollary 19. In both cases we choose $v = t$ and

$$C_j = \begin{cases} \frac{(-1)^{\alpha+\beta}(s-\alpha)(\alpha-\beta+1)}{\beta^2(2\alpha-s+1)(\frac{\alpha}{\beta})} \binom{\alpha}{s-\alpha} \epsilon & \text{if } j = -1, \\ 1 & \text{if } j = 0, \\ \frac{(-1)^{j+1}(s-\alpha-\beta)}{\beta} \binom{j}{2\alpha-s+1} \binom{\alpha+1}{j+1} & \text{if } j \in \{1, \dots, \alpha\}. \end{cases}$$

Since $v_p(C_{-1}) = t$ and $C_0 = 1$, the conditions we need to verify in order to be able to apply corollary 19 are

$$\begin{aligned} t &\leq v_p(\vartheta_w(D_\bullet)) \text{ for } \alpha \leq w < 2\nu - \alpha, \\ t &< v_p(\vartheta_w(D_\bullet)) \text{ for } 0 \leq w < \alpha, \\ \vartheta' &= -C_{-1} + O(\epsilon p). \end{aligned}$$

Let us consider the matrix

$$A = (A_{w,j})_{0 \leq w, j \leq \alpha}$$

that has integer entries

$$A_{w,j} = \sum_{0 < i(p-1) < r-2\alpha} \binom{r-\alpha+j}{i(p-1)+j} \binom{i(p-1)}{w}.$$

Then the second and third conditions are equivalent to the claim that

$$A(C_0, \dots, C_\alpha)^T = (-C_1 + O(\epsilon p), O(\epsilon p), \dots, O(\epsilon p))^T.$$

As in the proof of the approximation claim in the proof of the main result of [Ars21] (and as in proposition 20) we can show that

$$A = S + \epsilon N + O(\epsilon p),$$

where

$$\begin{aligned} S_{w,j} &= \sum_{i=1}^{\beta} \binom{s+\beta(p-1)-\alpha+j}{i(p-1)+j} \binom{i(p-1)}{w} - \binom{s+\beta(p-1)-\alpha+j}{s-\alpha} \binom{\beta(p-1)}{w}, \\ N_{w,j} &= \sum_v (-1)^{w-v} \binom{j+w-v-1}{w-v} \binom{s+\beta(p-1)-\alpha+j}{v} \partial \sum_{i=0}^{\beta} \binom{s+\beta(p-1)-\alpha+j-v}{i(p-1)+j-v} \\ &\quad - [w=0] \binom{s+\beta(p-1)-\alpha+j}{j} \partial - \binom{s-\alpha-\beta+j}{s-\alpha} \partial \binom{-\beta}{w} - \binom{s-\alpha-\beta+j}{s-\alpha} \binom{-\beta}{w} \partial. \end{aligned}$$

The first condition follows from an argument similar to the one in the fourth bullet point in the proof of theorem 17 in [Ars21]: if we extend the number of rows in A , S , and N to $2\nu - \alpha$ by defining $A_{w,j}$, $S_{w,j}$, and $N_{w,j}$ with the same equations used for the first $\alpha + 1$ rows, then we have $A \equiv S \pmod{\epsilon}$ and so we can replace A with $S + O(\epsilon)$, and $\vartheta_w(D_\bullet)$ for each $\alpha \leq w < 2\nu - \alpha$ is a \mathbb{Z}_p -linear combination of $\vartheta_0(D_\bullet) = O(\epsilon), \dots, \vartheta_\alpha(D_\bullet) = O(\epsilon)$. And, as in the proof of theorem 17 in [Ars21], the second and third conditions follow if

$$\begin{aligned} S(C_0, \dots, C_\alpha)^T &= 0, \\ N(C_0, \dots, C_\alpha)^T &= (-C_1 \epsilon^{-1}, 0, \dots, 0)^T + Sv + O(p) \text{ for some } v. \end{aligned}$$

Let $B = B_\alpha$ be the $(\alpha + 1) \times (\alpha + 1)$ matrix defined in lemma 6. Then BS has zeros outside of the rows indexed $1, \dots, \beta - 1$, and

$$(BS)_{i,j} = \binom{s+\beta(p-1)-\alpha+j}{i(p-1)+j}$$

for $i \in \{1, \dots, \beta - 1\}$. Let \bar{R} denote the $(\alpha + 1) \times (\alpha + 1)$ matrix over \mathbb{F}_p obtained from \bar{BN} by replacing the rows indexed $1, \dots, \beta - 1$ with the corresponding rows of \bar{BS} . As in the proof of theorem 17 in [Ars21] we can compute

$$\begin{aligned} (\bar{BN})_{i,j} &= \sum_{l,v=0}^{\alpha} (-1)^{i+l+v} \binom{l}{i} \binom{j-v}{l-v} \binom{s-\alpha-\beta+j}{v}^{\partial} \binom{\bar{s}-\alpha+j-v}{j-v}^{\partial} \\ &\quad - [i = 0] \binom{s-\alpha-\beta+j}{j}^{\partial} - [i = \beta] \binom{s-\alpha-\beta+j}{s-\alpha}^{\partial} \\ &\quad - (-1)^i \binom{s-\alpha-\beta+j}{s-\alpha} \sum_{l=0}^{\alpha} \binom{l}{i} \binom{l-\beta-1}{l}^{\partial}. \end{aligned}$$

Thus lemma 14 implies that

$$\bar{R}(C_0, C_1, \dots, C_{\alpha})^T = \left(\frac{(-1)^{\alpha+\beta+1}(s-\alpha)(\alpha-\beta+1)}{\beta^2(2\alpha-s+1)\binom{\alpha}{\beta}} \binom{\alpha}{s-\alpha}, 0, \dots, 0 \right)^T.$$

So the conditions we need to apply corollary 19 are indeed satisfied, and that completes the proof. \blacksquare

Proof of proposition 24. This is the first time that we consider an α such that $\alpha \geq s$. The major difference in this scenario is that s is not the “correct” remainder of r to work with and instead we should consider the number that is congruent to $r \bmod p - 1$ and belongs to the set $\alpha + 1, \dots, p - \alpha - 1$. Let us therefore define $s_{\alpha} = \bar{r} - \bar{\alpha} + \alpha$, and in particular let us note that $s_{\alpha} = s$ for $s > \alpha$ (which has hitherto always been the case). Then the computations in the proof of theorem 17 in [Ars21] work out exactly the same if we replace every instance of s with s_{α} (and the restricted sum “ $\sum_{i>0}$ ” with “ $\sum_{0 < i(p-1) < r-\alpha}$ ” when $s_{\alpha} = p - 1$). The sufficient condition for these computations to work is

$$\binom{s_{\alpha}-\alpha}{2\nu-\alpha} \in \mathbb{Z}_p^{\times},$$

which is indeed the case since $s_{\alpha} - \alpha = p - 1 + s - \alpha \geq 2\nu - \alpha$. So there is an analogous version of theorem 17 in [Ars21], and we can conclude the desired result—as the proof of theorem 17 in [Ars21] works nearly without modification, we omit the full details of the arguments. \blacksquare

Proof of proposition 25. Let us write $\alpha = \frac{s}{2} + 1$ and, as the claim we want to prove is vacuous for $s = 2$, let us assume that $s \geq 4$ and in particular $\alpha \geq 3$. We apply part (3) of corollary 19 with v chosen in the open interval $(v_p(a) - \alpha, t)$ and

$$C_j = \begin{cases} 0 & \text{if } j \in \{-1, 0\}, \\ (-1)^j \binom{\alpha-2}{j} + (-1)^{j+1}(\alpha-2) \binom{\alpha-2}{j-1} + pC_j^* & \text{if } j \in \{1, \dots, \alpha\}, \end{cases}$$

for some constants $C_1^*, \dots, C_{\alpha}^*$ yet to be chosen. The conditions necessary for the lemma to be applicable are satisfied if $\check{C} = \sum_j C_j \binom{r-\alpha+j}{j} \in \mathbb{Z}_p^{\times}$ and

$$\vartheta_w(D_{\bullet}) = O(\epsilon)$$

for $0 \leq w < 2\nu - \alpha$. We have

$$\begin{aligned} \check{C} &= \sum_j C_j \binom{s-\alpha-\beta+j}{s-\alpha-\beta} + O(p) \\ &= -1 + \sum_j \left((-1)^j \binom{\alpha-2}{j} + (-1)^{j+1}(\alpha-2) \binom{\alpha-2}{j-1} \right) \binom{s-\alpha-\beta+j}{s-\alpha-\beta} + O(p) \\ &= -1 + O(p) \in \mathbb{Z}_p^{\times} \end{aligned}$$

by (c-e) since $\alpha - 2 > s - \alpha - \beta$. And, since

$$j \leq s - \alpha - \beta + j \leq s - \beta < p - i,$$

we also have

$$\binom{s+\beta(p-1)-\alpha+j}{i(p-1)+j} = \binom{\beta}{i} \binom{s-\alpha-\beta+j}{j-i} + O(p).$$

Thus the equality $\vartheta_w(D_\bullet) = O(p)$ follows from the fact that

$$\sum_j (-1)^j \binom{\alpha-2}{j-2} \binom{s-\alpha-\beta+j}{s-\alpha-\beta+i} = 0,$$

which follows from (c-e) since $\alpha-2 > \alpha-2-\beta+i = s-\alpha-\beta+i$. Moreover, we can choose

$$C_1^*, \dots, C_\alpha^*$$

in a way that $\vartheta_w(D_\bullet) = 0$ for $0 \leq w < 2\nu-\alpha$ similarly as in the proof of theorem 17 in [Ars21] since the reduction modulo p of the matrix

$$\left(\binom{s+\beta(p-1)-\alpha+j}{i(p-1)+j} \right)_{1 \leq i, j < \beta} = \left(\binom{\beta}{i} \binom{s-\alpha-\beta+j}{j-i} + O(p) \right)_{1 \leq i, j < \beta}$$

is upper triangular with units on the diagonal. Thus the conditions we need to apply corollary 19 are satisfied and we can conclude that $\widehat{N}_{s/2+1}$ is trivial modulo \mathcal{I}_a . \blacksquare

Proof of proposition 26. Let us write $\alpha = \frac{s}{2} - 1$ and, as the claim we want to prove is vacuous for $s = 2$, let us assume that $s \geq 4$ and in particular $\alpha \geq 3$. The only obstruction in the proof of proposition 22 that prevents us from concluding that $\widehat{N}_{s/2-1}$ is trivial modulo \mathcal{I}_a is that the dominant terms are

$$E_\xi \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^\xi h_\xi$$

for $\frac{s}{2} < \xi \leq 2\nu - \frac{s}{2}$ rather than H . We can see from proposition 25 that

$$E_{s/2+1} \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^{s/2+1} h_{s/2+1} = x_1 + x_2,$$

with $v_p(x_1) \geq t+1$, and with $x_2 \in \text{im}(T-a)$. Since the valuation of the coefficient of H is less than $t+1$, we can remove the obstruction coming from

$$E_{s/2+1} \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^{s/2+1} h_{s/2+1}$$

by replacing it with x_1 . If $s = 2\nu - 2$ then this is the only obstruction and we can conclude that $\widehat{N}_{s/2-1}$ is trivial modulo \mathcal{I}_a . Now suppose that $s < 2\nu - 2$. Then just as in the proof of theorem 17 in [Ars21] we can apply part (1) of corollary 19 and conclude that \widehat{N}_α is trivial modulo \mathcal{I}_a as long as $(\epsilon, 0, \dots, 0)^T$ is in the image of the matrix $A = (A_{w,j})_{0 \leq w, j \leq \alpha}$ that has integer entries

$$A_{w,j} = \sum_{i>0} \binom{r-\alpha+j}{i(p-1)+j} \binom{i(p-1)}{w} = S_{w,j} + \epsilon N_{w,j} + O(\epsilon p)$$

with S and N as in proposition 20. However, this time we can deduce more than that: since $s < 2\nu - 2$ it follows that

$$1 \bullet_{KZ, \overline{\mathbb{Q}}_p} x^{s/2+1} y^{r-s/2-1}$$

is equal to

$$g_1 \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^{s/2+1} x^{s/2-n+1} y^{r-np-s/2-1} + x_3$$

for some g_1 with $v_p(g_1) \geq v_p(a) - \frac{s}{2} - 1$ and some $x_3 \in \text{im}(T-a)$. This in turn by proposition 25 is equal to

$$g_2 \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^{s/2+1} h_2 + x_4$$

for some g_2 with $v_p(g_2) \geq t$, some h_2 , and some $x_4 \in \text{im}(T - a)$. Here we use the fact that the valuation of the constant C_1 from proposition 25 is at least one and therefore the corresponding term H is

$$g_2 \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^{s/2+1} x^{s/2-n+1} y^{r-np-s/2-1} + x_5 + O(\epsilon)$$

for some g_3 with $v_p(g_3) = v_p(a) - \frac{s}{2} - 1$ and some $x_5 \in \text{im}(T - a)$. In general the error term would be

$$C_1 a p^{-s/2} g_4 \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^{s/2} x^{s/2-n} y^{r-np-s/2} + O(\epsilon)$$

rather than $O(\epsilon)$ —a description of this error term is given in part (2) of lemma 15. This implies that we can add a constant multiple of

$$1 \bullet_{KZ, \overline{\mathbb{Q}}_p} x^{s/2+1} y^{r-s/2-1}$$

to the element

$$\sum_i D_i \bullet_{KZ, \overline{\mathbb{Q}}_p} x^{i(p-1)+\alpha} y^{r-i(p-1)-\alpha} + O(ap^{-\alpha})$$

from the proof of lemma 17, and we can translate this back to adding the extra column

$$\left(\binom{r-\alpha}{s-\alpha}, \dots, \binom{r}{s} \right)^T$$

to A . As in proposition 20 we can then reduce showing that $(\epsilon, 0, \dots, 0)^T$ is in the image of A to showing that

$$(1, 0, \dots, 0)^T$$

is in the image of the $(\alpha+1) \times (\alpha+2)$ matrix \overline{R} which is obtained from the matrix \overline{Q} defined in the proof of theorem 17 in [Ars21] by replacing all entries in the first row with zeros (because this time we do not divide the corresponding row of A by p) and by adding an extra column corresponding to the extra column of A . Thus, if we index the extra column to be the zeroth column, the lower right $\alpha \times \alpha$ submatrix of \overline{R} is upper triangular with units on the diagonal, the first column of \overline{R} is identically zero, and all entries of the first row of \overline{R} except for $\overline{R}_{0,0}$ are zero. As when computing $(\overline{BN})_{i,j}$ in proposition 23 we can find that

$$\overline{R}_{0,0} = \sum_{l=0}^{\alpha} \binom{l-\beta-1}{l}^{\partial} = \Phi'(-\beta-1)$$

with

$$\Phi(z) = \sum_{l=0}^{\alpha} \binom{z+l}{l} = \binom{z+\alpha+1}{\alpha}.$$

Thus

$$\overline{R}_{0,0} = \binom{\alpha-\beta}{\alpha}^{\partial} = \frac{(-1)^{\beta+1}}{\beta \binom{\alpha}{\beta}} \neq 0,$$

which implies that $(1, 0, \dots, 0)^T$ is in the image of \overline{R} . Thus the conditions we need to apply corollary 19 are satisfied and we can conclude that $\widehat{N}_{s/2-1}$ is trivial modulo \mathcal{J}_a . ■

Proof of proposition 27. Let us write $\alpha = \frac{s}{2} + 1$. The reason why the proof of proposition 25 does not work for $\beta \in \{\alpha-1, \alpha\}$ is because $\check{C} = O(p)$ for the constructed constants C_j . However, since $t > v_p(a) - \frac{s}{2}$, if $\check{C} \in p\mathbb{Z}_p^{\times}$ then the dominant term coming from lemma 18 is

$$H = b_H \left(\begin{smallmatrix} p & 0 \\ 0 & 1 \end{smallmatrix} \right) \bullet_{KZ, \overline{\mathbb{Q}}_p} \theta^n x^{\alpha-n} y^{r-np-\alpha} + O(p^{\nu-\alpha+1})$$

for the constant

$$b_H = \frac{ap^{-\alpha}}{1-p} \check{C}$$

which has valuation $v_p(a) - \alpha + 1$. As in proposition 26 it is crucial here that $C_1 = \mathcal{O}(p)$. Just as in the proof of proposition 25 we can reduce the claim we want to show to proving that there exist constants $C_1, \dots, C_\alpha \in \mathbb{Z}_p$ such that $C_1 = \mathcal{O}(p)$ and

$$\left(\binom{s+\beta(p-1)-\alpha+j}{i(p-1)+j} \right)_{0 \leq i < \beta, 0 < j \leq \alpha} (C_1, \dots, C_\alpha)^T = (p, 0, \dots, 0)^T.$$

Therefore it is enough to show that the square matrix

$$A_0 = \left(p^{[j=1]-[i \leq \beta-\alpha+1]} \binom{s+\beta(p-1)-\alpha+j}{i(p-1)+j} \right)_{0 \leq i < \beta, \alpha-\beta < j \leq \alpha}$$

has integer entries and is invertible (over \mathbb{Z}_p), as then we can recover

$$\begin{cases} C_1 = 0 \text{ and } (C_2, \dots, C_\alpha)^T = A_0^{-1}(1, 0, \dots, 0)^T & \text{if } \beta = \alpha - 1, \\ (C_1/p, \dots, C_\alpha)^T = A_0^{-1}(1, 0, \dots, 0)^T & \text{if } \beta = \alpha. \end{cases}$$

This follows from lemma 13. So the conditions we need to apply corollary 19 are satisfied and we can conclude that $\widehat{N}_{s/2+1}$ is trivial modulo \mathcal{I}_a . \blacksquare

Proof of proposition 28. Let us write $\alpha = \frac{s}{2} + 1$. This time the proofs of both parts (25) and (27) break down since $\check{C} = \mathcal{O}(p)$ and the dominant term is no longer H . Let us slightly tweak these constants and instead use

$$C_j = \begin{cases} (-1)^\alpha \epsilon & \text{if } j = -1, \\ (-1)^{\alpha+j+1} \alpha \binom{\alpha-2}{j-2} & \text{if } j \in \{0, \dots, \alpha\}. \end{cases}$$

Let \overline{R} be the matrix constructed in proposition 23. Then just as in the proof of proposition 25 we can show that $\check{C} = \mathcal{O}(p)$, and just as in the proof of proposition 20 we can show that the dominant term coming from equation (3) in lemma 18 is

$$(\vartheta' + C_{-1}) \bullet_{KZ, \overline{\mathbb{Q}_p}} \theta^\alpha x^{p-1} y^{r-\alpha(p+1)-p+1} + C_{-1} \bullet_{KZ, \overline{\mathbb{Q}_p}} \theta^n x^{\alpha-n} y^{r-np-\alpha}$$

(and therefore that $\text{ind}_{KZ}^G \text{sub}(\frac{s}{2} + 1)$ is trivial modulo \mathcal{I}_a) as long as

$$\overline{R}(C_0, \dots, C_\alpha)^T = (0, \dots, 0, 1)^T.$$

This follows from lemma 12. Thus the conditions we need to apply corollary 19 are satisfied and we can conclude that $\text{ind}_{KZ}^G \text{sub}(\frac{s}{2} + 1)$ is trivial modulo \mathcal{I}_a . \blacksquare

REFERENCES

- [Ars21] Bodan Arsovski, *On the reductions of certain two-dimensional crystalline representations*, Documenta Mathematica **26** (2021), 1929–1979.
- [Ber10] Laurent Berger, *Représentations modulaires de $\text{GL}_2(\mathbb{Q}_p)$ et représentations galoisiennes de dimension 2*, Astérisque, Société Mathématique de France **330** (2010), 263–279.
- [BLZ04] Laurent Berger, Hanfeng Li, and Hui June Zhu, *Construction of some families of two-dimensional crystalline representations*, Mathematische Annalen **329** (2004), no. 2, 365–377.
- [BG15] Shalini Bhattacharya and Eknath Ghate, *Reductions of Galois representations for slopes in $(1, 2)$* , Documenta Mathematica **20** (2015), 943–987.
- [Bre03a] Christophe Breuil, *Sur quelques représentations modulaires et p -adiques de $\text{GL}_2(\mathbb{Q}_p)$, I*, Compositio Mathematica **138** (2003), no. 2, 165–188.
- [Bre03b] ———, *Sur quelques représentations modulaires et p -adiques de $\text{GL}_2(\mathbb{Q}_p)$, II*, Journal of the Institute of Mathematics of Jussieu **2** (2003), no. 1, 23–58.
- [BG09] Kevin Buzzard and Toby Gee, *Explicit reduction modulo p of certain two-dimensional crystalline representations*, International Mathematics Research Notices **12** (2009), 2303–2317.
- [BG13] ———, *Explicit reduction modulo p of certain two-dimensional crystalline representations, II*, Bulletin of the London Mathematical Society **45** (2013), no. 4, 779–788.

- [Edi92] Bas Edixhoven, *The weight in Serre's conjectures on modular forms*, Inventiones Mathematicae **109** (1992), 563–594.
- [GG15] Abhijit Ganguli and Eknath Ghate, *Reductions of Galois representations via the mod p local Langlands correspondence*, Journal of Number Theory **147** (2015), 250–286.