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Abstract. Let p be a prime number and let k > 2 be an integer. In this article
we study the semi-simple reductions modulo p of two-dimensional irreducible
crystalline p-adic Galois representations with Hodge-Tate weights 0 and k − 1
and large slopes. Berger–Li–Zhu proved by using the theory of (ϕ, Γ)-modules
that this reduction is constant when the slope is larger than b k−2

p−1 c. Recently,
Bergdall–Levin improved this bound to b k−1

p
c by using the theory of Kisin

modules. In this article, under the extra assumptions p > 3 and p + 1 - k − 1,
we asymptotically improve this bound further to b k−1

p+1 c+ blogp(k − 1)c, which
is off from the predicted optimal bound ≈ k−1

p+1 only by a factor of O
(
logp k

)
rather than by a factor that is linear in k. As a consequence we deduce a partial
result towards a conjecture by Gouvêa: that the measures of supersingularities
of level Np oldforms tend to the zero measure on the interval ( 1

p+1 , p
p+1 ) when

p is coprime to 6N and Γ0(N)-regular. It is very likely that our methods extend
to the cases p ∈ {2, 3} and p + 1 - k − 1 as well, and therefore can be adapted
to eliminate the extra assumptions p > 3 and p + 1 - k − 1.

1. Introduction

1.1. Motivation. Let p be a prime number and let k > 2 andN be positive integers
such that N is coprime to p. In [Gou01], Gouvêa studied the “supersingularities”
of weight k, level Γ0(Np) eigenforms. To be specific, if f is such an eigenform
with slope v, we define the supersingularity of f as v

k−1 . The supersingularities of
weight k, level Γ0(Np) eigenforms belong to the interval [0, 1] and are symmetric
under η ↔ 1− η, and we denote by µk their discrete probability measure, i.e. the
probability measure on the interval [0, 1] we obtain by putting a point mass at
each supersingularity. For N = 1, his computations showed that the measure µk
is supported on [0, 1

p+1 ] ∪ [ p
p+1 , 1] most of the time, and the only exceptions that

occurred in his computations were for the primes p belonging to the set

E1 = {59, 79, 2411, 3371, 15271, 64709, 187441, 27310421}. (1)

Even the exceptional supersingularities seemed to approach either 1
p+1 or p

p+1 as
k →∞, leading Gouvêa to the following conjecture.

Conjecture A (Gouvêa). The sequence (µl)l>2 converges to the uniform measure
on [0, 1

p+1 ] ∪ [ p
p+1 , 1].

This is the p-adic version of an interesting twist on the Sato–Tate conjecture: while
the Sato–Tate conjecture asks about the distribution of the (real) slopes of a fixed
modular form for varying primes, here one is interested in the distributions of the
(p-adic) slopes of varying modular forms for a fixed prime.

1
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Each newform of level Γ0(N) maps onto a pair of oldforms f1, f2 of level Γ0(Np)
via the maps defined on q-expansions that send q 7→ q and q 7→ qp. If the slope of f
is α, then the slopes of f1, f2 are α and k − 1− α; moreover, every newform of level
Γ0(Np) has slope k−2

2 (see section 1 of [Gou01]). This is why µk is symmetric under
η ↔ 1− η, and it implies that finding the slopes of eigenforms of level Γ0(Np) is
equivalent to finding the slopes of newforms of level Γ0(N).

In [Buz05], Buzzard introduced the notion of “Γ0(N)-regularity” and made some
concrete conjectures about the slopes of modular forms for Γ0(N)-regular primes.
This notion is related to Gouvêa’s conjecture because all of the exceptional primes
in the set E1 are Γ0(1)-irregular, which led to the prediction that µk is supported
on [0, 1

p+1 ] ∪ [ p
p+1 , 1] when the prime p is Γ0(N)-regular. One avenue to attempt

to prove this prediction is via (p-adic) Galois representations, because the no-
tion of Γ0(N)-regularity can be rephrased in terms of Galois representations when
p > 3: a prime p > 3 is Γ0(N)-regular if and only if, for all weights l > 2 and all
f ∈ Sl(Γ0(N)), the modulo p Galois representation associated with f is reducible.
This also naturally leads to the more general prediction that all exceptions to Gou-
vêa’s observation happen only for modular forms whose associated modulo p Galois
representation is reducible.

1.2. Galois representations. The p-adic Galois representations Vk,a were intro-
duced by Colmez–Fontaine in [CF00], and we denote their semi-simple reductions
modulo p by V k,a. They relate to the Galois representations associated with mod-
ular forms because the Galois representation ρf associated with an eigenform f of
weight k, level Γ0(N), character χ, and Up-eigenvalue ap is

ρf = Vk,ap
√
χ ⊗
√
χ. (2)

Therefore, if p > 3 is Γ0(N)-regular then the statement
“V k,a reducible =⇒ vp(a) 6 α(k) for a function α : Z→ Q” (3)

implies that µk is supported on [0, α(k)
k−1 ] ∪ [1− α(k)

k−1 , 1].

Berger–Li–Zhu proved in [BLZ04] by using the theory of (ϕ,Γ)-modules that the
representations V k,a are locally constant around the infinite slope a = 0, and they
gave an explicit lower bound for the radius of the region of local constancy. To be
more specific, they showed the following theorem.

Theorem 1 (Berger–Li–Zhu). If vp(a) > bk−2
p−1 c then V k,a ∼= V k,0.

Since V k,0 ∼= ind(ωk−1
2 ) is irreducible when k is even (see for example proposition

6.1.2 in [Bre03]), and there are no nontrivial eigenforms of odd weight, theorem 1
implies the following corollary.

Corollary 2. If p > 3 is Γ0(N)-regular then each of restrictions(
µl|( 1

p−1 ,
p−2
p−1 )

)
l>2

(4)

is the zero measure on ( 1
p−1 ,

p−2
p−1 ).

In light of Gouvêa’s conjecture, the lower bound bk−2
p−1 c in theorem 1 is believed

to be suboptimal. The optimal bound is believed to be closer to k−1
p+1 . Recently,
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Bergdall–Levin improved the bound to bk−1
p c by using the theory of Kisin modules

([BL]). To be more specific, they showed the following theorem.

Theorem 3 (Bergdall–Levin). If vp(a) > bk−1
p c then V k,a ∼= V k,0.

A consequence of this theorem is the followning corollary, which is the analogue of
corollary 2 with the interval ( 1

p−1 ,
p−2
p−1 ) replaced by the interval ( 1

p ,
p−1
p ).

Corollary 4. If p > 3 is Γ0(N)-regular then each of restrictions(
µl|( 1

p−1 ,
p−2
p−1 )

)
l>2

(5)

is the zero measure on ( 1
p ,

p−1
p ).

1.3. Main results of this article. For simplicity, we assume the extra condition
p > 3. It is very likely that our methods extend to the case p ∈ {2, 3} as well, and
therefore can be adapted to eliminate the extra assumption p > 3.

Theorem M. If p > 3 and p+ 1 - k − 1 and
vp(a) > bk−1

p+1 c+ blogp(k − 1)c (6)
then V k,a ∼= V k,0.

In other words, under the extra conditions p > 3 and p+ 1 - k − 1, we asymptoti-
cally improve the bounds in theorems 1 and 3 to

bk−1
p+1 c+ blogp(k − 1)c = bk−1

p+1 c+ O
(
logp k

)
, (7)

which is off from the the predicted optimal bound ≈ k−1
p+1 only by an additive factor

of O
(
logp k

)
rather than by an additive factor that is linear in k.

The case p+ 1 - k − 1 is of local interest, but if p > 3 and p+ 1 | k − 1 then 2 - k,
and there are no nontrivial eigenforms of odd weight and level Γ0(N), so theorem M
is enough to imply the following global result.

Corollary C. If p > 3 is Γ0(N)-regular then the sequence of restrictions(
µl|( 1

p+1 ,
p
p+1 )

)
l>2

(8)

converges to the zero measure on ( 1
p+1 ,

p
p+1 ).

With conjecture A in mind, the interval ( 1
p+1 ,

p
p+1 ) is optimal here.

The proof of theorem M is based on the local Langlands correspondence, and there
are several known results that we use. We rely on Berger–Li–Zhu’s theorem for
the region already covered by it. Outside that region we rely on a theorem by
Chenevier–Colmez on the continuity of a family of trianguline representations that
V k,a belongs to. Counter-intuitively, the GL2(Qp)-representation associated with
V k,a itself via the local Langlands correspondence is too unwieldy, and the appli-
cation of Chenevier–Colmez’s theorem is crucial as it gives us a host of nearby rep-
resentations to work with instead. We use the approximation results from [Ars21a]
to relate V k,a to these nearby representations, and thus get the best of both worlds:
the simplicity of the GL2(Qp)-representation associated with V k,a (a result of the
“weight” parameter k of V k,a being small relative to the slope), and the structural
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richness of the GL2(Qp)-representations associated with the nearby representations
(a result of the weight parameters of these nearby representations being large rela-
tive to the slope).

1.4. Organization. In section 2 (“Definitions”) we introduce all of the neces-
sary definitions, and we also recall the p-adic and modulo p local Langlands cor-
respondences in the form that is the most convenient for this article. In section 3
(“General results about GL2(Qp)-representations”) we prove some general
results about the GL2(Qp)-representations associated with Galois representations
like V k,a via the local Langlands correspondence. Section 4 (“Proofs”) is the most
difficult one: it contains the bulk of the ideas that make up the proof of theorem M.
The proof contains a rather significant amount of rather difficult combinatorics. In
order to improve readability, we defer many of the combinatorial results to section 5
(“Combinatorics”); the reader is encouraged to treat that section as a black box
on first reading. As we use several results from [Ars21a], in order to be economical
with space we refer to that article for some general and combinatorial results in
sections 3 and 5.

2. Definitions

2.1. Notation. For the remainder of this article we assume that p is a prime
number and k and N are positive integers. For simplicity, we assume that p > 3,
though it is very likely that this assumption can be removed by suitably adjusting
our combinatorial results. We also assume that N ∈ Z\pZ is coprime to p. We
assume that a ∈ Zp is such that vp(a) > bk−1

p+1 c > 0. The modulo p Galois represen-
tation V k,a is defined in section 2 of [Ars21a] and subsection 1.1 of [BLZ04], so we
do not reproduce its definition here. In addition to V k,a we also consider “nearby”
representations V k′,a′ , where k′ ≈ k (i.e. k′ is very close to k in the p-adic norm)
and a′ ≈ a. To define these precisely, we note that a local constancy theorem by
Chenevier–Colmez (see proposition 4.13 in [Col08] and proposition 3.9 in [Che13]
for the results, and section 4 of [Ars21b] for further clarification on how they are
applied in this setting) implies that

V k,a ∼= V k+(p−1)pm,am (9)

for some integer M = M(k, a) > 0, all integers m >M , and a certain sequence
(am)m>M consisting of elements of Zp such that vp(am) = vp(a) for all m >M .
For the remainder of this article we fix an integer M = M(k, a) and a sequence
(am)m>M with this property. We define

r = k − 2,
% = bk−1

p+1 c = b r+1
p+1c,

E = blogp(k − 1)c. (10)

We want to choose integers ε, δ, η that satisfy

vp(ε)� vp(δ)� vp(η), (11)

and an element a ∈ Zp which has the same valuation as a such that V k+ε,a ∼= V k,a.
That way we can compute the representation V k,a by computing the isomorphic
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“nearby” representation V k+ε,a. The following explicitly chosen parameters (which
depend on k and a) work:

η = p100kMdvp(a)e ∈ Z,

δ = η100η ∈ Z,

ε = (p− 1)δ100δ = (p− 1)p1000000kMdvp(a)eηδ ∈ Z,

t = r + ε,

a = a1000000kMdvp(a)eηδ ∈ Zp, satisfying vp(a) = vp(a) > % = bk−1
p+1 c,

V = V t+2,a = V k+ε,a ∼= V k,a by equation (9). (12)

In light of theorem 1, theorem M is true if vp(a) > bk−2
p−1 c. Therefore, for the

remainder of this article we assume additionally that

bk−2
p−1 c > vp(a) > bk−1

p+1 c+ E . (13)

In particular, we note that a2 6= 4pk−1 and a 6= ±(1 + p−1)pk/2 and a2 6= 4pk+ε−1

and a 6= ±(1 + p−1)p(k+ε)/2; these are eigenvalues that could potentially cause prob-
lems with the local Langlands correspondence.

2.2. Local Langlands. Let B be the Borel subgroup of G = GL2(Qp) consisting
of the upper triangular elements, let K = GL2(Zp) ⊂ G = GL2(Qp), and let Z be
the center of G. Let µx be the unramified character of the Weil group that sends
the geometric Frobenius to x, and let | | : Q×p → Q×p ↪→ Q×p be the p-adic norm. Let
W be a finite-dimensional locally algebraic representation of the closed subgroup
KZ of G. We define the compact induction of W by

indGW :=
{
locally algebraic G→W

∣∣ f(hg) = hf(g) for all h ∈ KZ
& supp f is compact in KZ\G}. (14)

Suppose that W is over the field F ∈ {Qp,Fp}. For elements g ∈ G and w ∈W
we write g •H,F w for the unique element of indGW that is supported on KZg−1

and maps g−1 to w. Every element of indGW can be written as a finite linear
combination of functions of the type g •H,F w, and

g1(g2 •H,F (hw)) = (g1g2h) •H,F w. (15)

For l > 0 we define

Σ̃l = Syml(Q2
p) := Syml(Q2

p)⊗ |det|l/2, (16)

and we define Σl as the reduction of Syml(Z2
p) modulo the maximal ideal m of Zp.

For h ∈ Z we define

σh := Symh(F2
p). (17)

As in section 3 of [Ars21a], we note that we can view these as G-modules of homo-
geneous polynomials in two variables.

Let us also define the Hecke operator T ∈ EndG(indG Σ̃t) corresponding to the
double coset of ( p 0

0 1 ). This operator satisfies the explicit formula

T (γ •Qp v) =
∑
µ∈Fp γ( p [µ]

0 1 ) •Qp
(
( 1 −[µ]

0 p ) · v
)

+ γ( 1 0
0 p ) •Qp (( p 0

0 1 ) · v), (18)
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where [ξ] is the Teichmüller lift of ξ ∈ Fp to Zp. We define

Πt+2,a = indG Σ̃t/(T − a),

Θt+2,a = im
(

indG(Symt(Z2
p)) −−−→ Πt+2,a

)
,

Θt+2,a = Θt+2,a ⊗Zp Fp. (19)

In particular, Θt+2,a is a quotient of indG Σt, and we define I to be the ideal such
that

Θt+2,a ∼= indG Σt/I . (20)

The ideal I contains the reduction modulo p of any integral element in the image
of T − a. For j ∈ {0, . . . , p− 1}, λ ∈ Fp, and a character ψ : Q×p → F×p , we write

π(j, λ, ψ) := (indG σt/(Tσ − λ))⊗ ψ, (21)

where Tσ ∈ EndG(indG σj) is the Hecke operator corresponding to the double coset
of ( p 0

0 1 ). We let ω be the modulo p reduction of the cyclotomic character, ind(ωj+1
2 )

be the unique irreducible representation whose determinant is ωj+1 and that is
equal to ωj+1

2 ⊕ ωp(j+1)
2 on inertia, h ∈ {1, . . . , p− 1} and h ∈ {0, . . . , p− 2} be the

numbers in the corresponding sets that are congruent to h modulo p− 1. The
following theorem is the main result of [Ber10] and says that the modulo p Langlands
correspondence is compatible with the p-adic local Langlands correspondence.

Theorem 5. There are j ∈ {0, . . . , p− 1} and ψ : Q×p → F×p such that either

Θk,a
∼= π(j, 0, ψ) (22)

or

Θss
k,a
∼=
(
π(j, λ, ψ)⊕ π(p− 3− j, λ−1, ωj+1ψ)

)ss (23)

for some λ ∈ Fp. In the former case we have

V k,a ∼= ind(ωj+1
2 )⊗ ψ, (24)

and in the latter case we have

V k,a ∼=
(
µλω

j+1 ⊕ µλ−1
)
⊗ ψ. (25)

Let Θ = Θss
t+2,a. Proposition 4.1.4 in [BLZ04] implies that

V k,0 ∼=

{
ind(ωk−1

2 ) if p+ 1 - k − 1,(
µ√−1 ⊕ µ−√−1

)
⊗ ω(k−1)/(p+1) if p+ 1 | k − 1.

(26)

Therefore, in order to prove theorem M, we want to show that

V = V t+2,a ∼= ind(ωk−1
2 ), (27)

(since p+ 1 - k − 1). So theorem 5 implies that theorem M can be rewritten in the
following equivalent form.

Theorem M’. Recall that p > 3 and p+ 1 - k − 1 and vp(a) > bk−1
p+1 c+ E. We have

Θ ∼= π(r − 2%, 0, ω%). (28)

So the goal of this article is to prove theorem M’.
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2.3. More notation. Let ν = bvp(a)c+ 1. We cite section 4 of [Ars21a] for the
definitions of O(α), and (for h ∈ Z) Ih, and θ = xyp − xpy, and the evaluation [P ]
of a boolean P , which we do not reproduce here. We also recall that there is a
filtration

Θ = Θ0 ⊃ Θ1 ⊃ · · · ⊃ Θα ⊃ · · · ⊃ Θν = 0 (29)

whose αth subquotient (for α ∈ {0, . . . , ν − 1}) is a subquotient of

N̂α = indG
(
θ
αΣt−α(p+1)/θ

α+1Σt−(α+1)(p+1)

)
∼= indG It−2α(α) ∼= indG Ir−2α(α).

(30)

To be specific, if an element of

indG
(
θ
αΣt−α(p+1)/θ

α+1Σt−(α+1)(p+1)

)
(31)

is represented by an element of I ⊂ indG Σt, then that element is trivial in the
subquotient Θα/Θα+1. Finally, we define (for α ∈ {0, . . . , ν − 1})

sub(α) = σr−2α(α) ⊂ Nα,
quot(α) = Nα/σr−2α(α) ∼= σ2α−r(r − α), (32)

similarly as in section 4 of [Ars21a], and we denote by Tq,α, Ts,α the Hecke operators
corresponding to the double coset of ( p 0

0 1 ) on the modules indG quot(α), indG sub(α),
respectively. For α ∈ {0, . . . , δ} we define

hα = xαyt−α − xα+δyt−α−δ ∈ Σ̃t,

h∗α = ( 0 1
1 0 )hα = xt−αyα − xt−α−δyα+δ ∈ Σ̃t. (33)

For α, β,R > 0 we define ΛR(α, β) by∑α
β=α−R ΛR(α, β)

((p−1)X+α
α−β

)
=
(
R−X
R

)
= (−1)R

(
X−1
R

)
∈ Qp[X]. (34)

Note that both sides of equation (34) are polynomials in X over Qp of degree R.

3. General results about GL2(Qp)-representations

Lemma 6. If α ∈ {0, . . . , η} then

a •Qp hα ≡I p
α( 1 0

0 p ) •Qp xαyt−α + O
(
p2η). (35)

If α ∈ {0, . . . , η}, β ∈ {α, . . . , η}, and (Cl)l∈Z is a family of elements of Zp then∑
i

(∑α
l=α−β Cl

(
t−α+l
i(p−1)+l

))
•Qp xi(p−1)+αyt−i(p−1)−α

≡I
ap−α

p−1
∑α
l=α−β Clp

l
∑
µ∈F×p [µ]−l( p [µ]

0 1 ) •Qp hα−l + O(pη). (36)

Proof. We have

a •Qp hα ≡I T (1 •Qp hα)
≡I

∑
µ∈Fp( p [µ]

0 1 ) •Qp Aµ + ( 1 0
0 p ) •Qp A, (37)
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where, due to the explicit equation for T (equation (18)),

Aµ = xα(−[µ]x+ py)t−α − xα+δ(−[µ]x+ py)t−α−δ

=
∑
ξ>0(−[µ])t−α−ξ

((
t−α
ξ

)
−
(
t−α−δ
ξ

))
pξxt−ξyξ = O

(
δp−2η + p2η) = O

(
p2η),
(38)

and

A = pαxαyt−α + O
(
pα+δ) = pαxαyt−α + O

(
p2η). (39)

Equations (37), (38), and (39) imply equation (35). Equation (35) implies that

ap−α

p−1
∑α
l=α−β Clp

l
∑
µ∈F×p [µ]−l( p [µ]

0 1 ) •Qp hα−l
≡I

1
p−1

∑α
l=α−β Cl

∑
µ∈F×p [µ]−l( 1 [µ]

0 1 ) •Qp xα−lyt−α+l + O
(
p2η−β)

≡I

∑α
l=α−β Cl

∑
i

(
t−α+l
i(p−1)+l

)
•Qp xi(p−1)+αyt−i(p−1)−α + O(pη), (40)

which implies equation (36).

Lemma 7. Let α ∈ {0, . . . , η} and v ∈ Q and the family (Di)i∈Z of elements of Zp
be such that

Di = 0 for i 6∈ [ −αp−1 ,
t−α
p−1 ],

v 6 vp(ϑw(D•)) for α 6 w 6 2η,
v < vp(ϑw(D•)) for 0 6 w < α. (41)

For j ∈ Z, let

∆j = (−1)j−η(1− p)−α
(
α
j−η
)
ϑα(D•), (42)

so that (∆j)j∈Z is supported on the set of indices {η, . . . , α+ η} and therefore
ϑw(∆•) is properly defined for 0 6 w < α. Then v 6 vp(ϑα(∆•)) 6 vp(∆j) for all
j ∈ Z, and ∑

i(∆i −Di) •Qp xi(p−1)+αyt−i(p−1)−α

≡I −
∑
i6(η+vp(a)−α)/(p−1) Di •Qp hi(p−1)+α

−
∑
i>(t−α−η−vp(a))/(p−1) Di •Qp h∗t−i(p−1)−α

+ E •Qp θα+1h+ F •Qp h′ + O(pη), (43)

for some polynomials h, h′ and some E,F ∈ Zp with vp(E) > v and vp(F ) > v.

Proof. By using the equation

γ •Qp v ≡I a−1T (γ •Qp v), (44)
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and equation (18), we can deduce that∑
i(∆i −Di) •Qp xi(p−1)+αyt−i(p−1)−α

≡I a−1T
(∑

i(∆i −Di) •Qp xi(p−1)+αyt−i(p−1)−α)
≡I a−1∑

i(∆i −Di)
∑
λ∈F×p ( p [λ]

0 1 ) •Qp xi(p−1)+α(−[λ]x+ py)t−i(p−1)−α

+ a−1∑
i(∆i −Di)

(
pt−i(p−1)−α( p 0

0 1 ) + pi(p−1)+α( 1 0
0 p )
)

•Qp xi(p−1)+αyt−i(p−1)−α

≡I a−1∑
i(∆i −Di)

∑
λ∈F×p ( p [λ]

0 1 ) •Qp xi(p−1)+α(−[λ]x+ py)t−i(p−1)−α

−
∑
i6(η+vp(a)−α)/(p−1) Di •Qp hi(p−1)+α

−
∑
i>(t−α−η−vp(a))/(p−1) Di •Qp h∗t−i(p−1)−α + O(pη). (45)

The third congruence follows from lemma 6. We also have∑
λ∈F×p ( p [λ]

0 1 ) •Qp xi(p−1)+α(−[λ]x+ py)t−i(p−1)−α

≡I

∑2η
ξ=0

(
t−i(p−1)−α

ξ

)
pξ
∑
λ∈F×p [−λ]t−α−ξ( p [λ]

0 1 ) •Qp xt−ξyξ + O
(
p2η)

≡I a
∑2η
ξ=0

(
t−i(p−1)−α

ξ

)
•Qp

∑
λ∈F×p [−λ]t−α−ξ( 1 [λ]

0 1 )h∗ξ + O
(
p2η). (46)

The second congruence follows from lemma 6. By assumption, if

Xξ =
∑
i(∆i −Di)

(
t−i(p−1)−α

ξ

)
, (47)

then vp(Xξ) > v for ξ ∈ {0, . . . , α}, and vp(Xξ) > v for ξ ∈ {α+ 1, . . . , 2η}. This
means that equation (46) implies that

a−1∑
i(∆i −Di)

∑
λ∈F×p ( p [λ]

0 1 ) •Qp xi(p−1)+α(−[λ]x+ py)t−i(p−1)−α

≡I

∑2η
ξ=0 Xξ •Qp

∑
λ∈F×p [−λ]t−α−ξ( 1 [λ]

0 1 )h∗ξ + O(pη), (48)

which together with equation (45) implies equation (43) with

Eθα+1h =
∑2η
ξ=α+1 Xξ

∑
λ∈F×p [−λ]t−α−ξ( 1 [λ]

0 1 )h∗ξ ,

Fh′ =
∑α
ξ=0 Xξ

∑
λ∈F×p [−λ]t−α−ξ( 1 [λ]

0 1 )h∗ξ . (49)

Lemma 8. Let (Cl)l∈Z be any family of elements of Zp. Suppose that α ∈ {0, . . . , η}
and β ∈ {α, . . . , η} and v ∈ Q and the family (Di)i∈Z defined by

Di = [i ∈ {d −αp−1e, . . . , b
t−α
p−1c}]D

′
i +
∑α
l=α−β Cl

(
t−α+l
i(p−1)+l

)
(50)

satisfy

v 6 vp(ϑw(D•)) for α 6 w 6 2δ,
v < vp(ϑw(D•)) for 0 6 w < α. (51)
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Note that (Di)i∈Z is supported on the finite set of indices {d −αp−1e, . . . , b
t−α
p−1c}. Then

(1− p)−αϑα(D•) •Qp θαxη(p−1)yt−α(p+1)−η(p−1)

≡I
ap−α

p−1
∑α
l=α−β Clp

l
∑
µ∈F×p [µ]−l( p [µ]

0 1 ) •Qp hα−l

+
∑
iD
′
i •Qp xi(p−1)+αyt−i(p−1)−α

−
∑
i6(η+vp(a)−α)/(p−1) Di •Qp hi(p−1)+α

−
∑
i>(t−α−η−vp(a))/(p−1) Di •Qp h∗t−i(p−1)−α

+ E •Qp θα+1h+ F •Qp h′ + O(pη), (52)

for some polynomials h, h′ and some E,F ∈ Zp with vp(E) > v and vp(F ) > v.

Proof. Lemma 6 implies that∑
i(Di −D′i) •Qp xi(p−1)+αyt−i(p−1)−α

≡I
ap−α

p−1
∑α
l=α−β Clp

l
∑
µ∈F×p [µ]−l( p [µ]

0 1 ) •Qp hα−l + O(pη). (53)

Equation (53) together with lemma 7 implies that∑
i ∆i •Qp xi(p−1)+αyt−i(p−1)−α

≡I
ap−α

p−1
∑α
l=α−β Clp

l
∑
µ∈F×p [µ]−l( p [µ]

0 1 ) •Qp hα−l

+
∑
iD
′
i •Qp xi(p−1)+αyt−i(p−1)−α

−
∑
i6(η+vp(a)−α)/(p−1) Di •Qp hi(p−1)+α

−
∑
i>(t−α−η−vp(a))/(p−1) Di •Qp h∗t−i(p−1)−α

+ E •Qp θα+1h+ F •Qp h′ + O(pη), (54)

for some polynomials h, h′ and some E,F ∈ Zp with vp(E) > v and vp(F ) > v.
Equation (54) can be rewritten in the form of equation (52) because∑

i ∆i •Qp xi(p−1)+αyt−i(p−1)−α

= (1− p)−αϑα(D•) •Qp θαxη(p−1)yt−α(p+1)−η(p−1). (55)

4. Proofs

We want to prove theorem M’ by computing Θ. We accomplish this as the cumu-
lative result of the following six subsections.

4.1. If Q is an ∞-dimensional factor of Θ, then Q is not a factor of N̂α,
for α ∈ {0, . . . , %− 1}. For α ∈ {0, . . . , %− 1}, let us define the matrix

M
(r)
α =

((
r−α+j
i(p−1)+j

))
{i | i(p−1)+α∈(%,r−%)}, α−%6j6α

. (56)
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So the rows of M (r)
α are indexed by those i such that i(p− 1) + α ∈ (%, r − %), and

the columns of M (r)
α are indexed by those j such that α− % 6 j 6 α. This means

that M (r)
α has C = %+ 1 columns and

R 6 b r−2ρ+p−2
p−1 c 6 %+ 1 = C (57)

rows, i.e. M (r)
α has no more rows than columns. Let

M
(r)′
α =

((
r−α+j
i(p−1)+j

))
{i | i(p−1)+α∈(%,r−%)}, α−R<j6α

(58)

be the right R×R submatrix of M (r)
α . We can write(

r−α+j
i(p−1)+j

)
=
(

r
i(p−1)+α

)(
i(p−1)+α
α−j

)(
r

α−j
)−1

, (59)

so the Zp-module determined by the image of the matrix M (r)′
α contains the Zp-

module determined by the image of the matrix((
r

i(p−1)+α
)(
i(p−1)+α
α−j

))
{i | i(p−1)+α∈(%,r−%)}, α−R<j6α

. (60)

Lemma 9 implies that

vp

((
r

i(p−1)+α
))

6 blogp(r + 1)c = E , (61)

so the latter Zp-module contains pE × the Zp-module determined by the image of
the matrix

M
(r)′′
α =

((
i(p−1)+α
α−j

))
{i | i(p−1)+α∈(%,r−%)}, α−R<j6α

. (62)

There exists a γ ∈ Z>0 such that M (r)′′
α is obtained from

M
(r)′′′
α =

((
i(p−1)+γ

j

))
06i,j<R

(63)

by permuting the rows. By Vandermonde’s convolution formula,

M
(r)′′′
α =

((
i(p−1)
j

))
06i,j<R

·
((

γ
j−i
))

06i,j<R
. (64)

Since the matrix ((
γ
j−i
))

06i,j<R
(65)

is upper triangular with 1’s on the diagonal and

det
((
i(p−1)
j

))
06i,j<R

= (p− 1)R det
((

i
j

))
06i,j<R

= (p− 1)R (66)

by a variant of Vandermonde’s determinant identity, the reduction modulo p of
M

(r)′′′
α has full rank (in characteristic p). This in turn implies that the reduction

modulo p of M (r)′′
α has full rank. Therefore, for each u such that

u(p− 1) + α ∈ (%, r − %), (67)
there exist constants Cα(r, u), . . . , Cα−R+1(r, u) such that

M
(r)′
α (Cα(r, u), . . . , Cα−R+1(r, u))T = pE([i = u]){i | i(p−1)+α∈(%,r−%)}, (68)

i.e. such that ∑α
l=α−R+1 Cl(r, u)

(
r−α+l
i(p−1)+l

)
= [i = u]pE (69)

for all i such that
i(p− 1) + α ∈ (%, r − %). (70)
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By adding linear combinations of equation (69) for varying u, we get that∑
i(p−1)+α∈(%,r−%)

∑α
l=α−% Cl

(
r−α+l
i(p−1)+l

)
xi(p−1)+αyr−i(p−1)−α

+
∑
i(p−1)+α∈[0,%]∪[r−%,r] D

′
ix
i(p−1)+αyr−i(p−1)−α

= pEθαxp−1yr−α(p+1)−p+1 ∈ Σ̃r, (71)

for some Cl, D′i. Let Di(r) be the coefficient of xi(p−1)+αyr−i(p−1)−α on the right
side of equation (71). Then, due to part (5) of lemma 6 and lemma 7 in [Ars21a],

ϑw(D•(r)) =
∑
iDi(r)

(
i(p−1)
w

)
(72)

is zero for 0 6 w < α, and has valuation that is greater than or equal to E for
w > α, with equality for w = α. Let Di be the coefficient of xi(p−1)+αyr−i(p−1)−α

in ∑
i(p−1)+α∈(%,t−%)

∑α
l=α−% Cl

(
t−α+l
i(p−1)+l

)
xi(p−1)+αyt−i(p−1)−α

+
∑
i(p−1)+α∈[0,%]∪[t−%,t] D

′′
i x
i(p−1)+αyt−i(p−1)−α, (73)

where D′′i = D′i and D′′t−i = D′r−i for i(p− 1) + α ∈ [0, %]. Since

vp((i(p− 1) + α)!) 6 vp(%!) 6 k (74)

for i(p− 1) + α ∈ [0, %], it is easy to show by using lemma 5 in [Ars21a] that

ϑw(D•) = ϑw(D•(r)) + O
(
εp−k−W

)
(75)

for all 0 6 w 6W . In particular, we can apply lemma 8 to the constants (Di)i∈Z
and to v = E , and as a result get that

(1− p)−αϑα(D•) •Qp θαxη(p−1)yt−α(p+1)−η(p−1)

≡I
ap−α

p−1
∑α
l=α−% Clp

l
∑
µ∈F×p [µ]−l( p [µ]

0 1 ) •Qp hα−l

+
∑
i(p−1)+α∈[0,%]∪[t−%,t] D

′′′
i •Qp xi(p−1)+αyt−i(p−1)−α

−
∑
i6(η+vp(a)−α)/(p−1) Di •Qp hi(p−1)+α

−
∑
i>(t−α−η−vp(a))/(p−1) Di •Qp h∗t−i(p−1)−α

+ E •Qp θα+1h+ F •Qp h′ + O(pη), (76)

for some h, h′ and some E,F ∈ Zp with vp(E) > E and vp(F ) > E . Here

D′′′i = D′′i −
∑α
l=α−% Cl

(
t−α+l
i(p−1)+l

)
(77)

for all i such that

i(p− 1) + α ∈ [0, %] ∪ [t− %, t]. (78)

The left side of equation (76) is pEψ, where ψ is an integral element whose reduction
modulo p represents a generator of N̂α. We can use lemma 6 to get that the first
and second lines on the right side of equation (76) are

O
(
pvp(a)−%) = O

(
pE
)
. (79)

We can also use equation (71) to get that

Di = O
(
pE
)

(80)
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for all i such that
i(p− 1) + α ∈ [0, r − %) ∪ (t− r + %, t]. (81)

This is because
Di = Di(r) + O

(
εp−vp(η!)) (82)

for all i such that i(p− 1) + α ∈ [0, r − %), and
Dt−i = Dr−i(r) + O

(
εp−vp(η!)) (83)

for all i such that i(p− 1) + α ∈ (t− r + %, t]. We also have, due to equation (71),
Dw = O

(
εp−vp(η!)) (84)

for all i and all
w ∈ Z60 ∪ Z> t−2α

p−1
. (85)

This, together with lemma 6, implies that the sum of the third and fourth lines
on the right side of equation (76) is pE × an integral element whose reduction
modulo p represents the trivial element of N̂α. Finally, the fifth line of on the
right side of equation (76) is evidently pE × an integral element whose reduction
modulo p represents the trivial element of N̂α. Therefore equation (76) gives an
element in I that generates N̂α, implying that no ∞-dimensional factor of Θ is a
subquotient of N̂α.

4.2. If Q is an ∞-dimensional factor of Θ, then Q is not a factor of N̂α

for α ∈ {%+ 1, . . . , ν − 1}. Let
%′ = d r−αp e − 1. (86)

For α ∈ {%+ 1, . . . , ν − 1} and l ∈ {α− %′, . . . , α} let us define
Cl = Λ%′(α, l)

(
r
α−l
)
. (87)

As in subsection 4.1 we can conclude that∑
i(p−1)+α∈(α,%′(p−1)+α]

∑α
l=α−%′ Cl

(
r−α+l
i(p−1)+l

)
xi(p−1)+αyr−i(p−1)−α = 0 ∈ Σ̃r.

(88)
Let Di be the coefficient of xi(p−1)+αyt−i(p−1)−α in∑

i(p−1)+α∈(α,t−r+%′(p−1)+α]
∑α
l=α−%′ Cl

(
t−α+l
i(p−1)+l

)
xi(p−1)+αyt−i(p−1)−α. (89)

Then it is easy to show by using lemma 5 in [Ars21a] that
ϑw(D•) = O

(
εp−k−W

)
(90)

for all 0 6 w 6W . In particular, we can apply lemma 8 to the constants (Di)i∈Z
and to v = η, and as a result get that

ap−α

p−1
∑α
l=α−%′ Clp

l
∑
µ∈F×p [µ]−l( p [µ]

0 1 ) •Qp hα−l

≡I

∑
i(p−1)+α∈[0,α]∪(t−r+%′(p−1)+α,t] D

′
i •Qp xi(p−1)+αyt−i(p−1)−α

+
∑
i6(η+vp(a)−α)/(p−1) Di •Qp hi(p−1)+α

+
∑
i>(t−α−η−vp(a))/(p−1) Di •Qp h∗t−i(p−1)−α + O(pη), (91)
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where

D′i =
∑α
l=α−%′ Cl

(
t−α+l
i(p−1)+l

)
(92)

for all i such that

i(p− 1) + α ∈ [0, α] ∪ (t− r + %′(p− 1) + α, t]. (93)

By approximating Di with Di(r) + O
(
εp−vp(η!)) as in subsection 4.1 we can show

that the third and fourth lines of equation (91) are in

O
(
pαp−vp(a)) = O

(
ap−α+(k−2vp(a)−p+3))

= O
(
ap−α+(p−3)(k/(p−1)−1))

= O
(
ap−α+2E). (94)

Consequently we get that∑
i(p−1)+α∈[0,α]∪(t−r+%′(p−1)+α,t]

∑α
l=α−%′ Cl

(
t−α+l
i(p−1)+l

)
•Qp xi(p−1)+αyt−i(p−1)−α

≡I
ap−α

p−1
∑α
l=α−%′ Clp

l
∑
µ∈F×p [µ]−l( p [µ]

0 1 ) •Qp hα−l + O
(
ap−α+2E). (95)

Lemma 6 and the definition of (Cl)α−%′6l6α then imply that∑
i(p−1)+α∈[0,α] Xi( p 0

0 1 ) •Qp hi(p−1)+α

+
∑
i(p−1)+α∈(t−r+%′(p−1)+α,t] X

∗
i ( 1 0

0 p ) •Qp h∗t−i(p−1)−α

≡I
1
p−1

∑α
l=α−%′ Clp

l
∑
µ∈F×p [µ]−l( p [µ]

0 1 ) •Qp hα−l + O
(
p2E), (96)

where

Xi = p−i(p−1)( t
i(p−1)+α

)(
%′−i
%′

)
,

X∗i = pi(p−1)+2α−t( t
i(p−1)+α

)(
%′−i
%′

)
. (97)

By lemma 10,

vp(X0) = vp

((
t
α

))
< vp

(
p−i(p−1)( t

i(p−1)+α
)(
%′−i
%′

))
= vp(Xi) (98)

for all i such that i(p− 1) + α ∈ [0, α). By lemma 11,

vp(X0) = vp

((
t
α

))
< vp

(
pi(p−1)+2α−t( t

i(p−1)+α
)(
%′−i
%′

))
= vp(X∗i ) (99)

for all i such that i(p− 1) + α ∈ (t− r + %′(p− 1) + α, t]. By lemma 12,

vp(X0) = vp

((
t
α

))
< vp

(
Λ%′(α, l)

(
t

α−l
)
pl
)

= vp
(
Clp

l
)

(100)

for all l ∈ {α− %′, . . . , α}. Moreover, by lemma 9,

vp(X0) = vp

((
t
α

))
= vp

((
r
α

))
< 2E . (101)

So if we divide both sides of equation (96) by
(
t
α

)
we get an integral element, and

if we reduce that integral element modulo p then the only contributing term to
the result is the “i = 0” term in the first line of equation (96). Therefore we can
conclude that I contains

( p 0
0 1 ) • Fp hα, (102)

which represents a generator of N̂α, and we can conclude the desired result.
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4.3. If r − %(p+ 1) = p− 2 and Q is an ∞-dimensional factor of Θ, then
Q is not a factor of indG sub(%). Let r − %(p+ 1) = p− 2, so that

sub(%) ∼= σp−2(%). (103)

The proof in this case is very similar to the proof in subsection 4.1, so we just give
a rough sketch. We let

M (r) =
((

r−%+j
i(p−1)+j

))
{i | i(p−1)+%∈(%,r−%)}, 06j6%

. (104)

As in subsection 4.1 we can prove that the image of a certain lattice under the right
square submatrix of M (r) (seen as an endomorphism) contains pE × that lattice.
We can conclude the following analogous equation to equation (71):∑

i(p−1)+%∈(%,r−%)
∑%
l=0 Cl

(
r−%+l
i(p−1)+l

)
xi(p−1)+%yr−i(p−1)−%

+
∑
i(p−1)+%∈[0,%]∪[r−%] D

′
ix
i(p−1)+%yr−i(p−1)−%

= pEθ%yr−%(p+1) ∈ Σ̃r, (105)

for some integers D′i. The main difference with equation (71) is that we must write
θ%yr−%(p+1) instead of θ%xp−1yr−%(p+1)−p+1. This means that we can only conclude
that

Dw = O
(
εp−vp(η!)) (106)

for all

w ∈ Z<0 ∪ Z> t−2%
p−1

(107)

(rather than for all w ∈ Z60 ∪ Z> t−2%
p−1

) in the equation

(1− p)−%ϑ%(D•) •Qp θ%xη(p−1)yt−%(p+1)−η(p−1)

≡I
ap−%

p−1
∑%
l=0 Clp

l
∑
µ∈F×p [µ]−l( p [µ]

0 1 ) •Qp h%−l

+
∑
i(p−1)+%∈[0,%]∪[t−%,t] D

′′′
i •Qp xi(p−1)+%yt−i(p−1)−%

−
∑
i6(η+vp(a)−%)/(p−1) Di •Qp hi(p−1)+%

−
∑
i>(t−%−η−vp(a))/(p−1) Di •Qp h∗t−i(p−1)−%

+ E •Qp θ%+1h+ F •Qp h′ + O(pη), (108)

for some h, h′ and some E,F ∈ Zp with vp(E) > E and vp(F ) > E , which is the
analogous equation to equation (75). In other words, the difference is that D0 is
not negligible, and instead

D0 = ϑ%(D•) + O
(
εp−vp(η!)). (109)

So upon dividing equation (108) by ϑ%(D•) and reducing modulo p we get that I
contains

1 • Fp (θ%xη(p−1)yt−%(p+1)−η(p−1) + h%). (110)

It is easy to show that his represents a generator of indG sub(%) (but is trivial in
indG quot(%)), which finishes the proof of the desired result as in subsection 4.1.
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4.4. If r − %(p+ 1) = 1 and Q is an∞-dimensional factor of indG quot(%),
then Q is a factor of indG quot(%)/Tq,%. Let r − %(p+ 1) = 1, so that

quot(%) ∼= σp−2(%+ 1). (111)
We want to show that I contains a representative of a generator of

Tq,%

(
indG quot(%)

)
. (112)

Let
Cl = Λ%(%, l)

(
r
%−l
)

(113)

for l ∈ {0, . . . , %}. As in subsection 4.2 we can conclude that∑
i(p−1)+%∈[0,%] Xi( p 0

0 1 ) •Qp hi(p−1)+%

+
∑
i(p−1)+%∈(t−r+%p,t] X

∗
i ( 1 0

0 p ) •Qp h∗t−i(p−1)−%

≡I
1
p−1

∑%
l=0 Clp

l
∑
µ∈F×p [µ]−l( p [µ]

0 1 ) •Qp h%−l + O
(
p2E), (114)

where
Xi = p−i(p−1)( t

i(p−1)+%
)(
%−i
%

)
,

X∗i = p(i−%)(p−1)−1( t
i(p−1)+%

)(
%−i
%

)
. (115)

Again, by lemma 13,

vp(X0) = vp

((
t
%

))
< vp

(
p−i(p−1)( t

i(p−1)+%
)(
%−i
%

))
= vp(Xi) (116)

for all i such that i(p− 1) + % ∈ [0, %). By lemma 14,

vp(X0) = vp

((
t
%

))
< vp

(
p(i−%)(p−1)−1( t

i(p−1)+%
)(
%−i
%

))
= vp(X∗i ) (117)

for all i such that i(p− 1) + % ∈ (t− r + %p, t]. By lemma 15,

vp(X0) = vp

((
t
%

))
< vp

(
Λ%(%, l)

(
t
%−l
)
pl
)

= vp
(
Clp

l
)

(118)

for all l ∈ {1, . . . , %}. And, by lemma 9,

vp(X0) = vp

((
t
%

))
= vp

((
r
%

))
< 2E . (119)

This means that if we divide both sides of equation (114) by
(
t
%

)
and reduce the

resulting integral element modulo p, the two contributing terms are the “i = 0”
term in the first line of equation (114) and the “l = 0” term in the third line of
equation (114). Therefore I contains∑

µ∈Fp( p [µ]
0 1 ) • Fp h%, (120)

which is a representative of a generator of

Tq,%

(
indG quot(%)

)
, (121)

and that completes the proof.

Proof of theorem M’ (⇔ theorem M). Let Q be an infinite-dimensional factor of
Θt+2,a. Subsections 4.1 and 4.2 imply the following two facts about Q.

1. Q is not a factor of N̂α for α ∈ {0, . . . , %− 1}.

2. Q is not a factor of N̂α for α ∈ {%+ 1, . . . , ν − 1}.
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From these two facts we can conclude that either Q is a factor of indG sub(%) or it
is a factor of indG quot(%). In light of theorem 5 and as in section 10 of [Ars21a]
this implies equation (28) for r − %(p+ 1) ∈ {−1, . . . , p− 1}\{−1, 1, p− 2}.

Subsections 4.3 and 4.4 prove the following facts for r − %(p+ 1) ∈ {1, p− 2}.

3. If
r − %(p+ 1) = p− 2 (122)

(and therefore sub(%) ∼= σp−2(%)) then Q is a factor of indG quot(%).

4. If
r − %(p+ 1) = 1 (123)

(and therefore quot(%) ∼= σp−2(%+ 1)) and Q is a factor of indG quot(%) then Q is
a factor of of indG quot(%)/Tq,%.

These two claims imply equation (28) for r − %(p+ 1) ∈ {1, p− 2}. Since we assume
that p+ 1 - k − 1, we have r − %(p+ 1) 6= −1, and therefore the proof is complete.

Proof that theorem M implies corollary C. As in subsection 4.2 of [BLZ04] we can
use theorem M to conclude that µl is supported on[

0, 1
p+1 + logp l

l−1

]
∪
[

p
p+1 −

logp l
l−1 , 1

]
, (124)

and that completes the proof because
logp l
l−1 → 0 (125)

as l→∞—we omit the details.

5. Combinatorics

Lemma 9. If α ∈ Z>1 and β ∈ {0, . . . , α} then

vp

((
α
β

))
6 blogp αc. (126)

Proof. A theorem by Kummer says that

vp

((
α
β

))
(127)

is the number of times one carries over a digit when adding β and α− β, and is
therefore strictly less than the number blogp αc+ 1 of digits of α.

Let α ∈ {%, . . . , ν − 1}, let
%′ = d r−αp e − 1, (128)

and for l ∈ {α− %′, . . . , α} let
Cl = Λ%′(α, l)

(
r
α−l
)
. (129)

Note that %′ 6 % and if r = %′(p+ 1) + 1 and α = % then %′ = %. The constants Cl
are precisely those constants that satisfy∑α

l=α−%′ Cl
(
r
α−l
)−1((p−1)X+α

α−l
)

=
(
%′−X
%′

)
∈ Qp[X]. (130)
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Moreover, let

Xi = p−i(p−1)( r
i(p−1)+α

)(
%′−i
%′

)
for i ∈ Z,

X∗i = pi(p−1)+2α−r( r
i(p−1)+α

)(
%′−i
%′

)
for i ∈ Z. (131)

Lemma 10. If α > % and i(p− 1) + α ∈ [0, α) then
vp (X0) < vp (Xi) . (132)

Proof. Note that i < 0, so let us write j = −i > 0. We have
X0 =

(
r
α

)
,

Xi = pj(p−1)( r
α−j(p−1)

)(
%′+j
%′

)
= pj(p−1)(r

α

) αj(p−1)
(r−α+j(p−1))j(p−1)

(
%′+j
j

)
. (133)

Therefore we want to show that
vp
(
(r − α+ j(p− 1))j(p−1)

)
< vp

(
αj(p−1)

)
+ vp ((%′ + j)j) + j(p− 1)− vp(j!).

(134)
Note that vp(j!) 6 j

p−1 , so it is enough to show that

vp
(
(r − α+ j(p− 1))j(p−1)

)
< vp

(
αj(p−1)

)
+ vp ((%′ + j)j) + j

(
p− 1− 1

p−1

)
.

(135)
We have

b r−α+j(p−1)
p c 6 %′ + j = d r−α+jp

p e − 1. (136)

We also have
d r−α+1

p e > %′ + 1 = d r−αp e. (137)

Therefore each term of the product
(r − α+ j(p− 1))j(p−1) = (r − α+ j(p− 1)) · · · (r − α+ 1) (138)

that is divisible by p is p times a term of the product
(%′ + j)j = (%′ + j) · · · (%′ + 1), (139)

implying that
vp
(
(r − α+ j(p− 1))j(p−1)

)
6 vp ((%′ + j)j) + w, (140)

where w is the number of terms of the product in equation (138) that are divisible
by p. Equation (135) follows from the fact that

w 6 b j(p−1)+p−1
p c < j

(
p− 1− 1

p−1

)
. (141)

Lemma 11. If α > % and i(p− 1) + α ∈ (%′(p− 1) + α, r] then
vp (X0) < vp (X∗i ) . (142)

Proof. We have i(p− 1) + α ∈ (%′(p− 1) + α, r] and therefore

j = i(p− 1) + 2α− r ∈
[
d r−αp e(p− 1) + 2α− r, α

]
⊆
[

(p+1)α−r
p , α

]
⊆ (0, α].

(143)
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So we can write
X0 =

(
r
α

)
,

X∗i = pi(p−1)+2α−r( r
i(p−1)+α

)(
%′−i
%′

)
= pj

(
r
α

) αj
(r−α+j)j

(
%′−i
%′

)
. (144)

Therefore we want to show that
vp ((r − α+ j)j) < vp (αj) + vp

((
%′−i
%′

))
+ j. (145)

We have (
%′−i
%′

)
= (−1)%′

(
i−1
%′

)
= (−1)%′

(
i−1

i−%′−1
)

= (−1)%′ (i−1)···(%′+1)
(i−%′−1)! . (146)

Because α > %′ and i > %′, we have r 6 ip+ α− 1, and therefore α− j 6 i− 1.
Moreover, α > %+ 1 > %′ + 1. Therefore the union of the intervals (%′ + 1, i− 1]
and (α− j + 1, α] is a single interval. This implies that

vp (αj(i− 1)i−%′−1) > vp (max{i− 1, α} · · ·min{%′ + 1, α− j}) . (147)
We also have

vp ((i− %′ − 1)!) 6 i−%′−1
p−1 . (148)

Since
pmax{i− 1, α}+ p− 1 > r − α+ j and pmin{%′ + 1, α− j} − p+ 1 6 r − α+ 1,

(149)
we have

vp ((r − α+ j)j) 6 vp (max{i− 1, α} · · ·min{%′ + 1, α− j}) + j+p−1
p . (150)

So it is enough to show that

j > j+p−1
p + i−%′−1

p−1 , (151)

which follows from
(i(p−1)+2α−r)(p−1)

p > i−%′+p−2
p−1 . (152)

The latter inequality follows from the fact that γ(i) = (i(p−1)+2α−r)(p−1)
p − i−%′+p−2

p−1
is increasing in i and γ(%′ + 1) > 2(p−1)

p − 1 > 0.

Lemma 12. If α > % and l ∈ {α− %′, . . . , α} then
vp (X0) < vp

(
Clp

l
)
. (153)

Proof. For l ∈ {α− %′, . . . , α} let

C ′l = Cl
(
r
α−l
)−1 ∈ Zp, (154)

so that ∑α
j=α−%′ C

′
j

((p−1)X+α
α−j

)
=
(
%′−X
%′

)
∈ Qp[X]. (155)

We have
X0 =

(
r
α

)
,

Clp
l = C ′l

(
r
α−l
)
pl = C ′l

(
r
α

)
αl

(r−α+l)l p
l. (156)

So we want to show that
vp (C ′l) > vp ((r − α+ l)l)− vp (αl)− l. (157)
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First suppose that α(p+ 1) + p− 1 > r + l. Then pα+ p− 1 > r − α+ l, implying
that the largest term in the sequence (r − α+ l, . . . , r − α+ 1) that is divisible by
p is at most as large as p times the largest term in the sequence (α, . . . , α− l + 1).
Moreover,

pα− pl + 1 6 pα− p(α− %′) + 1 = p%′ + 1 6 r − α+ 1, (158)

implying that the smallest term in the sequence (r − α+ l, . . . , r − α+ 1) that is
divisible by p is at least as large as p times the smallest term in the sequence
(α, . . . , α− l + 1). Therefore

vp ((r − α+ l)l)− vp (αl)− l 6 w − l 6 b l+p−1
p c − l 6 0, (159)

where w is the number of terms in the sequence (r − α+ l, . . . , r − α+ 1) that
are divisible by p. Equality in equation (159) holds if and only if l = 1 and
r − α+ 1 = pα, which can never happen. So the right side of equation (157) is
negative, implying equation (153) in the case when α(p+ 1) + p− 1 > r + l. Now
suppose that α(p+ 1) + p 6 r + l, so that

l > p(α− %′) + p− 1 > 2p− 1. (160)

For j ∈ {α− %′, . . . , α} let

C ′′j = (−1)%′(p− 1)j−αC ′j%′j−α+%′ ∈ Zp, (161)

so that∑α
j=α−%′ C

′′
j

∏α−j−1
u=0

(
X + α−u

p−1

)
= (X − 1) · · · (X − %′) ∈ Qp[X]. (162)

We use the fact that among any l consecutive integers there can be at most one
whose valuation is at least logp l. Moreover, if there is such a term then the sum
of the valuations of all the other terms is at most l−1

p−1 , and if there is no such
term then the sum of the valuations of all the terms is at most l−1

p−1 + blogp lc. So
if there is no term in the sequence (r − α+ l, . . . , r − α+ 1) whose valuation is at
least logp l, then

vp ((r − α+ l)l)− l < blogp lc −
l(p−2)
p−1 6 0, (163)

so

vp

(
C ′l
(
r
α

)
αl

(r−α+l)l p
l
)
> vp

((
r
α

) 1
(r−α+l)l p

l
)
> vp

((
r
α

))
. (164)

Suppose now that there is a term in the sequence (r − α+ l, . . . , r − α+ 1) whose
valuation is γ > logp l. If γ 6 l(p−2)

p−1 then we can similarly deduce that

vp

(
C ′l
(
r
α

)
αl

(r−α+l)l p
l
)
> vp

((
r
α

) 1
(r−α+l)l p

l
)
> vp

((
r
α

))
, (165)

so suppose that γ > l(p−2)
p−1 > logp l. If the term in (r − α+ l, . . . , r − α+ 1) whose

valuation is γ is p times a term in (α, . . . , α− l + 1), then we can similarly deduce
that

vp

(
C ′l
(
r
α

)
αl

(r−α+l)l p
l
)
> vp

((
r
α

)
αl

(r−α+l)l p
l
)
> vp

((
r
α

))
, (166)

so suppose that the term in (r − α+ l, . . . , r − α+ 1) whose valuation is γ is in
the subsequence (r − α+ l, . . . , p(α+ 1)). Let q = pγ−1. Informally speaking, the
assumptions that q is a “large” power of p and that (p(%′ + 1) + l, . . . , p(α+ 1))
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contains a multiple of pq (say bpq) and that α > %′ imply that α and %′ are “just
below” a multiple of q, and

%′ + l/p+ 1 > bq > α > %′ and q > p
l(p−2)
p−1 −1 and l > 2p− 1. (167)

For u ∈ {0, . . . , %′ − 1} let zu be the integer in {1, . . . , q} that is congruent to u−α
p−1

modulo q, and for j ∈ {α− %′, . . . , α} let C ′′′j be such that∑α
j=α−%′ C

′′′
j

∏α−j−1
u=0 (X − zu) =

∏q−s
i=1 (X − i)b

∏q
i=q−s+1(X − i)b−1 ∈ Qp[X],

(168)

where s = bq − %′. By reducing equation (162) modulo q we get C ′′j ≡ C ′′′j mod q.
For j ∈ {α− %′, . . . , α}, let Fj(X) =

∏α−j−1
u=0 (X − zu). Then

Fα(X) | · · · | Fα−%′(X), (169)

and if i0 ∈ {α− %′, . . . , α} is the smallest index such that Fi0(X) divides

G(X) =
∏q−s
i=1 (X − i)b

∏q
i=q−s+1(X − i)b−1, (170)

then equation (168) implies that C ′′′j = 0 for all j ∈ {i0 + 1, . . . , α}, and therefore
C ′′j ≡ 0 mod q for all j ∈ {i0 + 1, . . . , α}. We want to show that i0 > l, i.e. that∏α−l

u=0 (X − zu) | G(X). (171)

We have ∏(b−1)q−1
u=0 (X − zu) =

∏q
i=1(X − i)b−1, (172)

so in order to show equation (171) it is enough to show that∏α−l
u=(b−1)q (X − zu) |

∏q−s
i=1 (X − i), (173)

i.e. that the sets

{bq − α+ i | i ∈ {0, . . . , α− l − (b− 1)q}} (174)

and

{q − (p− 1)i | i ∈ {0, . . . , bq − %′ − 1}} (175)

are disjoint. This follows from

l > p(bq − %′ − 1)
=⇒ l > (p− 1)(bq − %′ − 1)
=⇒ q − l < q − (p− 1)(bq − %′ − 1). (176)

So i0 > l, and therefore C ′′l ≡ 0 mod q. Since

X0 =
(
r
α

)
,

Clp
l = C ′l

(
r
α

)
αl

(r−α+l)l p
l = C ′′l

(
r
α

)α···(%′+1)
(r−α+l)l p

l, (177)

and since vp(C ′′l ) > γ − 1 and

vp ((r − α+ l)l) 6 γ + l−1
p−1 (178)

and

l − l−1
p−1 − 1 = (l−1)(p−2)

p−1 > 2(p− 2) > 0, (179)

we can deduce equation (153) and complete the proof.
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Lemma 13. If r = %(p+ 1) + 1 and α = % and i(p− 1) + % ∈ [0, %) then

vp (X0) < vp (Xi) . (180)

Proof. The proof is similar to the proof of lemma 10. Note that i < 0, so let us
write j = −i > 0. We have

X0 =
(
r
%

)
,

Xi = pj(p−1)( r
%−j(p−1)

)(
%+j
%

)
= pj(p−1)(r

%

) %j(p−1)
(%p+j(p−1)+1)j(p−1)

(
%+j
j

)
. (181)

Therefore we want to show that

vp
(
(%p+ j(p− 1) + 1)j(p−1)

)
< vp ((%+ j)jp) + j

(
p− 1− 1

p−1

)
, (182)

since vp(j!) 6 j
p−1 . Since

(%+ j)p > %p+ j(p− 1) + 1 and %p+ 2 > (%− j(p− 1) + 1)p, (183)

each term of the product

(%p+ j(p− 1) + 1)j(p−1) (184)

that is divisible by p is p times a term of the product

(%+ j)jp. (185)

This together with

j
(
p− 1− 1

p−1

)
> (j+1)(p−1)

p (186)

implies equation (182).

Lemma 14. If r = %(p+ 1) + 1 and α = % and i(p− 1) + % ∈ (%p, r] then

vp (X0) < vp (X∗i ) . (187)

Proof. The proof is similar to the proof of lemma 11. We have i(p− 1) + % ∈ (%p, r]
and therefore

j = (i− %)(p− 1)− 1 ∈ [p− 2, %] . (188)

So we can write

X0 =
(
r
%

)
,

X∗i = pj
(
r
%

) %j
(%p+j+1)j

(
%−i
%

)
= (−1)%pj

(
r
%

) (i−1)i−%+j−1
(%p+j+1)j(i−%−1)! , (189)

where the last equality follows as in the proof of lemma 11. Therefore we want to
show that

vp ((%p+ j + 1)j) + i−%−1
p−1 < vp ((i− 1)i−%+j−1) + j. (190)

Since ip− 1 > i(p− 1) + % and %p− jp+ 1 6 %p+ 2, we have

vp ((%p+ j + 1)j) 6 vp ((i− 1)i−%+j−1) + j+p−1
p , (191)

and equation (190) follows from

j > j+p−1
p + i−%−1

p−1 , (192)

as in the proof of lemma 11.
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Lemma 15. If r = %(p+ 1) + 1 and α = % and l ∈ {1, . . . , %} then
vp (X0) < vp

(
Clp

l
)
. (193)

Proof. For l ∈ {0, . . . , %} let

C ′l = Cl
(
r
%−l
)−1 ∈ Zp, (194)

so that ∑%
j=0 C

′
j

((p−1)X+%
%−j

)
=
(
%−X
%

)
∈ Qp[X]. (195)

We have
X0 =

(
r
%

)
,

Clp
l = C ′l

(
r
%−l
)
pl = C ′l

(
r
%

)
%l

(%p+l+1)l p
l. (196)

Therefore in order to prove the lemma it is enough to show that, for l ∈ {1, . . . , %},
vp (C ′l) > vp ((%p+ l + 1)l)− vp (%l)− l. (197)

Note that equation (197) is not true for l = 0, since both sides are zero. As in the
proof of lemma 12, if l 6 p− 2 then we can deduce that

vp ((%p+ l + 1)l)− vp (%l)− l 6 l+p−1
p − l 6 0, (198)

with equality if and only if l = 1 and %p+ 2 = %p, which can never happen. So let
us assume that l > p− 1. For j ∈ {0, . . . , %} let

C ′′j = (−1)%(p− 1)j−%C ′j%j ∈ Zp, (199)
so that ∑%

j=0 C
′′
j

∏%−j−1
u=0

(
X + %−u

p−1

)
= (X − 1) · · · (X − %) ∈ Qp[X]. (200)

As in the proof of lemma 12, if there is no term in (%p+ l + 1, . . . , %p+ 2) whose
valuation is at least logp l, then

vp ((%p+ l + 1)l)− l < blogp lc −
l(p−2)
p−1 6 0, (201)

implying equation (197). Suppose now that there is a term in
(%p+ l + 1, . . . , %p+ 2) (202)

whose valuation is γ > logp l. If γ 6 l(p−2)
p−1 then we can similarly deduce equa-

tion (197) as in the proof of lemma 12, so suppose that γ > l(p−2)
p−1 > logp l. Let

q = pγ−1. We have, for some positive integer b,

%+ (l + 1)/p > bq > % and q > p
l(p−2)
p−1 −1 and l > p− 1. (203)

For u ∈ {0, . . . , %− 1} let zu be the integer in {1, . . . , q} that is congruent to u−%
p−1

modulo q, and for j ∈ {0, . . . , %} let C ′′′j be such that∑%
j=0 C

′′′
j

∏%−j−1
u=0 (X − zu) =

∏q−s
i=1 (X − i)b

∏q
i=q−s+1(X − i)b−1 ∈ Qp[X], (204)

where s = bq − %. By reducing equation (200) modulo q we get C ′′j ≡ C ′′′j mod q.
For j ∈ {0, . . . , %}, let Fj(X) =

∏%−j−1
u=0 (X − zu). Then

F%(X) | · · · | F0(X), (205)
and if i0 ∈ {0, . . . , %} is the smallest index such that Fi0(X) divides

G(X) =
∏q−s
i=1 (X − i)b

∏q
i=q−s+1(X − i)b−1, (206)
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then equation (204) implies that C ′′′j = 0 for all j ∈ {i0 + 1, . . . , %}, and therefore
C ′′j ≡ 0 mod q for all j ∈ {i0 + 1, . . . , %}. So again, as in the proof of lemma 12, we
can complete the proof by noting that

l > p(bq − %)− 1
=⇒ l > (p− 1)(bq − %− 1)
=⇒ q − l < q − (p− 1)(bq − %− 1)
=⇒ i0 > l, (207)

and therefore that, due to equation (196), equation (193) follows from
vp (C ′′l ) + vp (%l)− vp ((%p+ l + 1)l)− l

> γ − 1− γ − l−1
p−1 + l = (l−1)(p−2)

p−1 > (p−2)2

(p−1) > 0. (208)
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