LIMITING MEASURES OF SUPERSINGULARITIES

BODAN ARSOVSKI

ABSTRACT. Let p be a prime number and let & > 2 be an integer. In this article
we study the semi-simple reductions modulo p of two-dimensional irreducible
crystalline p-adic Galois representations with Hodge-Tate weights 0 and k — 1
and large slopes. Berger—Li—Zhu proved by using the theory of (<p, I')-modules
that this reduction is constant when the slope is larger than | £ 1J Recently,
Bergdall-Levin improved this bound to Lk 1J by using the theory of Kisin
modules. In this article, under the extra assumptlons p>3andp+11k—1,
we asymptotically improve this bound further to | £ +1J + [log, (k — 1)], which
is off from the predicted optimal bound ~ % only by a factor of O(loglJ k)
rather than by a factor that is linear in k. As a consequence we deduce a partial
result towards a conjecture by Gouvéa: that the measures of supersingularities
of level Np oldforms tend to the zero measure on the interval (—— FEg p+1) when
p is coprime to 6N and I'g(IV)-regular. It is very likely that our methods extend
to the cases p € {2,3} and p+ 11k — 1 as well, and therefore can be adapted
to eliminate the extra assumptions p >3 and p+ 11k — 1.

1. INTRODUCTION

1.1. Motivation. Let p be a prime number and let k£ > 2 and N be positive integers
such that N is coprime to p. In [Gou01], Gouvéa studied the “supersingularities”
of weight k, level I'o(Np) eigenforms. To be specific, if f is such an eigenform
with slope v, we define the supersingularity of f as %5. The supersingularities of
weight k, level T'o(Np) eigenforms belong to the interval [0,1] and are symmetric
under 7 <> 1 —n, and we denote by px their discrete probability measure, i.e. the
probability measure on the interval [0,1] we obtain by putting a point mass at
each supersingularity. For N = 1, his computations showed that the measure py
is supported on [0, #] U [p’ﬁ, 1] most of the time, and the only exceptions that
occurred in his computations were for the primes p belonging to the set

Ey = {59, 79,2411, 3371, 15271, 64709, 187441, 27310421} (1)

Even the exceptional supersingularities seemed to approach either
k — o0, leading Gouvéa to the following conjecture.

or as

1 _P_
p+1 p+1
Conjecture A (Gouvéa). The sequence (w;);>2 converges to the uniform measure

on [0 JU 5k, 1]

1
> pt+l
This is the p-adic version of an interesting twist on the Sato—Tate conjecture: while
the Sato—Tate conjecture asks about the distribution of the (real) slopes of a fixed
modular form for varying primes, here one is interested in the distributions of the
(p-adic) slopes of varying modular forms for a fixed prime.
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Each newform of level T'g(N) maps onto a pair of oldforms fi, fo of level T'o(Np)
via the maps defined on g-expansions that send ¢ — g and ¢ — ¢P. If the slope of f
is «, then the slopes of f1, fo are a and k — 1 — «; moreover, every newform of level
T'o(Np) has slope % (see section 1 of [Gou01]). This is why p, is symmetric under
1< 1 —n, and it implies that finding the slopes of eigenforms of level T'g(Np) is
equivalent to finding the slopes of newforms of level T'o(V).

In [Buz05|, Buzzard introduced the notion of “I'g(N)-regularity” and made some
concrete conjectures about the slopes of modular forms for I'g(IV)-regular primes.
This notion is related to Gouvéa’s conjecture because all of the exceptional primes
in the set Ey are I'g(1)-irregular, which led to the prediction that py is supported
on [0, ﬁ] U [;47,1] when the prime p is I'o(V)-regular. One avenue to attempt
to prove this prediction is via (p-adic) Galois representations, because the no-
tion of T'g(V)-regularity can be rephrased in terms of Galois representations when
p > 3: a prime p > 3 is I'o(IV)-regular if and only if, for all weights [ > 2 and all
f € 81(To(N)), the modulo p Galois representation associated with f is reducible.
This also naturally leads to the more general prediction that all exceptions to Gou-
véa’s observation happen only for modular forms whose associated modulo p Galois
representation is reducible.

1.2. Galois representations. The p-adic Galois representations V}, , were intro-
duced by Colmez—Fontaine in , and we denote their semi-simple reductions
modulo p by Vi . They relate to the Galois representations associated with mod-
ular forms because the Galois representation p; associated with an eigenform f of
weight k, level T'o(IN), character x, and U,-eigenvalue a,, is

Pt = Via,x @ VX- (2)
Therefore, if p > 3 is To(IV)-regular then the statement

“Vg,o reducible => v,(a) < a(k) for a function a: Z — Q” (3)
implies that py, is supported on [0, %} U[l - %, ].

Berger—Li—Zhu proved in by using the theory of (¢,I')-modules that the
representations Vi, are locally constant around the infinite slope a = 0, and they
gave an explicit lower bound for the radius of the region of local constancy. To be
more specific, they showed the following theorem.

Theorem 1 (Berger-Li-Zhu). If v,(a) > L%J then V.o = Vio.

Since Vo = ind(ws 1) is irreducible when k is even (see for example proposition

6.1.2 in [Bre03]), and there are no nontrivial eigenforms of odd weight, theorem 1
implies the following corollary.

Corollary 2. If p > 3 is Tg(N)-regular then each of restrictions

(Wl i) @
. 1 p-2
is the zero measure on (5=, E=7).
In light of Gouvéa’s conjecture, the lower bound LZ—;%J in theorem [1] is believed

to be suboptimal. The optimal bound is believed to be closer to %. Recently,
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Bergdall-Levin improved the bound to L%J by using the theory of Kisin modules
(IBL]). To be more specific, they showed the following theorem.

Theorem 3 (Bergdall-Levin). If v,(a) > L%J then V.o = Vio.

A consequence of this theorem is the followning corollary, which is the analogue of

corollary [2| with the interval (p%l, g%f) replaced by the interval (%7 ijl)

Corollary 4. If p > 3 is o(N)-regular then each of restrictions

(#l oy 222)) (5)

. —1
is the zero measure on (%, pT).

1.3. Main results of this article. For simplicity, we assume the extra condition
p > 3. It is very likely that our methods extend to the case p € {2,3} as well, and
therefore can be adapted to eliminate the extra assumption p > 3.

Theorem M. Ifp>3 andp+11tk—1 and
vp(a) > [ 2] + [log, (k — 1)) (6)
then Vk,a i V;%o.

In other words, under the extra conditions p > 3 and p+ 11k — 1, we asymptoti-
cally improve the bounds in theorems |1) and |3/ to

bri) + llog, (k — 1)) = [ 251 + O(log, k), (7)
which is off from the the predicted optimal bound ~ % only by an additive factor

of O(logp k) rather than by an additive factor that is linear in k.

The case p+ 11k — 1 is of local interest, but if p >3 and p+ 1| k — 1 then 21k,
and there are no nontrivial eigenforms of odd weight and level I'g(IV), so theorem M
is enough to imply the following global result.

Corollary C. Ifp > 3 is I'g(IN)-reqular then the sequence of restrictions

(ltrr20) o (8)

1 _p_
converges to the zero measure on (17, 757
With conjecture Alin mind, the interval (ﬁ, ﬁ) is optimal here.

The proof of theorem M| is based on the local Langlands correspondence, and there
are several known results that we use. We rely on Berger—Li—-Zhu’s theorem for
the region already covered by it. Outside that region we rely on a theorem by
Chenevier—Colmez on the continuity of a family of trianguline representations that
Vi.a belongs to. Counter-intuitively, the GL2(Q,)-representation associated with
V.o itself via the local Langlands correspondence is too unwieldy, and the appli-
cation of Chenevier—Colmez’s theorem is crucial as it gives us a host of nearby rep-
resentations to work with instead. We use the approximation results from [Ars21a]
to relate Vi, , to these nearby representations, and thus get the best of both worlds:
the simplicity of the GL2(Q,)-representation associated with V., (a result of the
“weight” parameter k of Vkﬂ being small relative to the slope), and the structural
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richness of the GL2(Q,,)-representations associated with the nearby representations
(a result of the weight parameters of these nearby representations being large rela-
tive to the slope).

1.4. Organization. In section 2 (“DEFINITIONS”) we introduce all of the neces-
sary definitions, and we also recall the p-adic and modulo p local Langlands cor-
respondences in the form that is the most convenient for this article. In section |3
(“GENERAL RESULTS ABOUT GL2(Q,)-REPRESENTATIONS”) we prove some general
results about the GL3(Q,)-representations associated with Galois representations
like Vg via the local Langlands correspondence. Section 4/ (“PROOFS”) is the most
difficult one: it contains the bulk of the ideas that make up the proof of theorem M.
The proof contains a rather significant amount of rather difficult combinatorics. In
order to improve readability, we defer many of the combinatorial results to section |5
(“COMBINATORICS”); the reader is encouraged to treat that section as a black box
on first reading. As we use several results from [Ars21a], in order to be economical
with space we refer to that article for some general and combinatorial results in
sections |3 and 5.

2. DEFINITIONS

2.1. Notation. For the remainder of this article we assume that p is a prime
number and k£ and N are positive integers. For simplicity, we assume that p > 3,
though it is very likely that this assumption can be removed by suitably adjusting
our combinatorial results. We also assume that N € Z\pZ is coprime to p. We
assume that a € Z, is such that v,(a) > | 21| > 0. The modulo p Galois represen-
tation Vk,a is defined in section 2 of and subsection 1.1 of , SO we
do not reproduce its definition here. In addition to V' , we also consider “nearby”
representations Vs ., where k' ~ k (i.e. k' is very close to k in the p-adic norm)
and a’ ~ a. To define these precisely, we note that a local constancy theorem by
Chenevier-Colmez (see proposition 4.13 in [Col08] and proposition 3.9 in |Chel3]
for the results, and section 4 of for further clarification on how they are
applied in this setting) implies that

Vk,a = VkJr(pfl)pm,am (9)

for some integer M = M (k,a) > 0, all integers m > M, and a certain sequence
(am)m>n consisting of elements of Z, such that v,(a,,) = v,(a) for all m > M.
For the remainder of this article we fix an integer M = M (k,a) and a sequence
(am)m>n with this property. We define

r=*k—2,
o=kt = |z,
& = |log,(k—1)/. (10)
We want to choose integers ¢, d, 7 that satisfy
vp(€) > vp(6) > vp(n), (11)

and an element a € Zp which has the same valuation as a such that V;H_e’u = Vk,w
That way we can compute the representation V' , by computing the isomorphic
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“nearby” representation V;Hs,w The following explicitly chosen parameters (which
depend on k and a) work:

n= plOOkM[vp(a)] c Z,

§=nl00 ¢ 7,

€= (p— 1)81000 = (p — 1)pl000000kM [vy(a)Ind ¢ 7,

t=r+e,

0 = 1000000k M v, (a)]ns € Lp, satisfying v,(a) = v,(a) > o = L%J,
V =Vii24=Vitea = Via by equation (9). (12)

In light of theorem [1, theorem M| is true if v,(a) > L%J Therefore, for the
remainder of this article we assume additionally that
1522] > vp(a) > | £ + £, (13)

In particular, we note that a # 4p*~! and a # (1 + p~1)p*/? and a® # 4pFte?
anda # (1 + pil)p(k“)ﬂ; these are eigenvalues that could potentially cause prob-
lems with the local Langlands correspondence.

2.2. Local Langlands. Let B be the Borel subgroup of G = GL2(Q,,) consisting
of the upper triangular elements, let K = GL3(Z,) C G = GL2(Q,), and let Z be
the center of G. Let p, be the unramified character of the WEeil group that sends
the geometric Frobenius to z, and let | | : Qy = Q) — Q be the p-adic norm. Let
W be a finite-dimensional locally algebralc representatlon of the closed subgroup
KZ of G. We define the compact induction of W by

ind® W = {locally algebraic G — W | f(hg) =hf(g) forall he KZ
& supp f is compact in KZ\G}. (14)

Suppose that W is over the field F € {Qp, p} For elements g € G and w € W
we write g e r w for the unique element of ind“ W that is supported on KZg~
and maps g 1 to w. Every element of ind® W can be written as a finite linear
combination of functions of the type g ey r w, and

91(92 o (hw)) = (g192h) e r w. (15)
For | > 0 we define
El = Sym (Q )= Sym ( )® |det|l/2 (16)

and we define ¥; as the reduction of Sym (Zi) modulo the maximal ideal m of Z,,.
For h € Z we define

op = Syimh(?i). (17)

As in section 3 of [Ars21aj, we note that we can view these as G-modules of homo-
geneous polynomials in two variables.

Let us also define the Hecke operator T € Endg(indG f)t) corresponding to the
double coset of (29). This operator satisfies the explicit formula

T(veg,v) = L,er, 1541 0g, ((637) - v) +7(55) o5, (51)-v),  (18)
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where [¢] is the Teichmiiller lift of £ € F), to Z,,. We define
Myyoq = ind® %, /(T — a),
Ory2.q = im (indG(@t(Zi)) s nm,a) ,
Ot12,0 = Opy2,0 ©7, F). (19)

In particular, ©;,2 4 is a quotient of ind“ ¥, and we define . to be the ideal such
that

@t+2,a = indG Et/j (20)

The ideal .# contains the reduction modulo p of any integral elemelltxin the image
of T —a. For j € {0,...,p— 1}, A € F},, and a character ¢ : Q; — F,, we write

w(, A ) = (ind® o/ (T, — N) @ ¢, (21)

where T,, € Endg(indG ;) is the Hecke operator corresponding to the double coset
of (29). We let w be the modulo p reduction of the cyclotomic character, ind(w} ™)
be the unique irreducible representation whose determinant is w/*! and that is
equal to w%“ ® wS(JH) on inertia, h € {1,...,p—1}and h € {0,...,p — 2} be the
numbers in the corresponding sets that are congruent to h modulo p — 1. The
following theorem is the main result of and says that the modulo p Langlands

correspondence is compatible with the p-adic local Langlands correspondence.

Theorem 5. There are j € {0,...,p— 1} and ¢ : Q) — F; such that either

Ok = 7(5,0,) (22)
or
O = (701 A 0) D 7(p =3 — j, A W t1y))” (23)
for some X € F,. In the former case we have
Vie 2 ind(w)™) @, (24)
and in the latter case we have
Viea = (paw?™ @ py-1) @ 9. (25)

Let © = éij—la' Proposition 4.1.4 in [BLZ04] implies that

_ ind(ws™) ifp+1tk—1,
Vio = (k=1)/(p+1) (26)
(hy—T®pu_ ) ®w P ifp4 1|k —1.
Therefore, in order to prove theorem M, we want to show that
V=Viia =Zindwh ), (27)

(since p+ 14k —1). So theorem 5 implies that theorem M can be rewritten in the

following equivalent form.

Theorem M’. Recall thatp >3 andp+ 11k —1 andv,(a) > L%J + &. We have
O = 7(r — 20,0,w?). (28)

So the goal of this article is to prove theorem M’L
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2.3. More notation. Let v = |v,(a)| + 1. We cite section 4 of for the
definitions of O(«a), and (for h € Z) I, and 6 = zy? — 2Py, and the evaluation [P]
of a boolean P, which we do not reproduce here. We also recall that there is a
filtration

0=600260;2:--260,D:--20,=0 (29)
whose ath subquotient (for a € {0,...,v — 1}) is a subquotient of
= . —a —a+1 ~ ~
N, = ind® (9 St—api)/0 T S e +1)) ~ ind® I,_on(a) = ind€ I,_sa(a).
(30)
To be specific, if an element of
. —o —a+1
ind® (6" Zo- ) /07 Si(ainpi) ) (31)

is represented by an element of % C ind“ 3, then that element is trivial in the
subquotient ©,/0,+1. Finally, we define (for o € {0,...,v —1})

sub(a) = 07— () C Nq,
quot(a) = No/0or—5(a) = 020 (r — @), (32)

similarly as in section 4 of [Ars21af, and we denote by T o, Ty o the Hecke operators
corresponding to the double coset of (#9) on the modules ind® quot(e), ind® sub(a),
respectively. For « € {0,...,d} we deﬁne

h _ l.ayt a ma+5yt7a76 c it’
By = (05)ha = @t~y —atmohyet € 55, (33)

[

For a, 8, R > 0 we define Ag(a, 3) by
S heamrArlen B) (P25 = (TR = CDRCR) e @lX) (39)
Note that both sides of equation (34) are polynomials in X over Q, of degree R.

3. GENERAL RESULTS ABOUT GL2(Q,)-REPRESENTATIONS

Lemma 6. If o € {0,...,n} then
aeg, ha =3p%(03)®g, 22y~ + O(p*"). (35)
Ifae{0,...,n}, Be{a,...,n}, and (Ci)icz is a family of elements of Z, then
(e t—a+l — i(p— a, t—i(p—1)—a
> (Zl:a—,@ (Z(p 1)+l)) °q, giP—DFayt—i(p-1)

Clp Zue]FX [ ] l(g [‘f]) .@p ha—t + O(pﬂ)_ (36)

Proof. We have
aeg, ha =3 T (1eg, ha)
=3 ZMGFP(S[T]).@;; Au"‘((l)g)'@p A, (37)
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where, due to the explicit equation for T' (equation (18)),

Ay = (=l 4+ py)' = = 2 (= [l + py)' =

= Yeso(—lu)m¢ ((t}a) - (Hg*é)) piat=fyt = O(6p~2" + p?1) = O(p?"),
(38)

and

A:paxaytfa_ko(paJrE) *pOéCC yt a+o( ) (39)

Equations (37)), (38), and (39) imply equation (35). Equation (35) implies that

C’lp > eIFX[ 1~ (g[’f])‘@ ha—
=3 Y as G2 (7,(tp alJ)r-lH) og, o'l

which implies equation (306). "

.Q e lyt a+l+o< 2n— [3)
Pyt o), (40)

Lemma 7. Let a € {0,...,n} and v € Q and the family (D;);cz of elements of Z,
be such that

D; =0 fori ¢ [, 1=5]

v < Up(Uw(Ds)) for o < w < 2n,
v < Up(9y(De)) for 0 < w < . (41)
Forj€Z, let
Aj = (—1F (1 = p)=(,% }9a(DW), (42)

so that (A})jez is supported on the set of indices {n,...,a+n} and therefore
Vw(As) is properly defined for 0 < w < a. Then v < vp(Ya(As)) < vp(4;) for all
JE€Z, and
Ez(Al _ Dz) g xi(p—l)—&-ayt—i(p—l)—a
=3 = Licrvy(@)-a)/(p-1) Di *T, hip-1)+a
= 2iz(t-a—n-vy(@)/(o-1) Di *T, Mi_i(p-1)-a
—l—Eo@p 9"‘+1h—|—F0@p h +O(p"), (43)

for some polynomials h,h' and some E,F € Z, with v,(E) > v and v,(F) > v.

Proof. By using the equation

veg, v=y0a 'T(yeg, v), (44)
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and equation (18), we can deduce that
SH(A: - Di) o, a0 beytie-n -
=5 a T (3,(A; — D) 3, gilp=Dtayt=ilp=1)—a)
=5 07 (A — D) Cyepr (52) o, 0150 (< Ao 4 py)t—ie- e

+a 7t (A= Dy) (p DT )) 4 p P (5))

i(p—1)+a,t—i(p—1)—«

°qQ, T Yy
=307 30 (A0 = Di) Yaepx (55)) 07, 2@V (= [Nz + py) il e
= Zi<mrop@-a)/(p-1) Di *T, hip-1)+a
= Ziz(-a—n—uvy(@)/(p—-1) Di *T, hi_ip-1)—a + O(")- (45)
The third congruence follows from lemma 6. We also have
Z/\e]k‘;f (51 °Q, S O N P ) M
=3 Xl (T ery [P (B ) 0, 7 Sf + O (p)
=3 Y2 (T 0, Y A S (LW hg 4+ O(). (46)
The second congruence follows from lemma [6. By assumption, if
Xe = 3,(A0 = Dy) (T ), (47)

then vy,(X¢) > v for £ € {0,...,a}, and vy(X¢) > v for £ € {a+1,...,2n}. This
means that equation (46) implies that

6 X8 = i) Sy (511) o, 207140 (< ¥+ py)/—ir1 0
=3 Zzlo X¢ o, ZAEF; [ e (1) )hi +O(p"), (48)
which together with equation (45) implies equation (43) with
Bt h = 357 oy Xe Yonery [FA T4 ()R,

FI' =370 Xe Ynery [FA 70745 )Re (49)

Lemma 8. Let (Cy)1cz be any family of elements of Z,,. Suppose that o € {0, ..., n}
and B € {a,...,n} and v € Q and the family (D;);cz defined by

Dy =lie{[z51, -, [ N0, + S0 5 Ci(i 5T (50)
satisfy
v < Up (9 (D)) for o < w < 26,
v < Up(¥y(Des)) for 0 S w < « (51)
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Note that (D;)icz is supported on the finite set of indices {[ =51, ..., L;*TOI‘J }. Then
_p)—@ — —1), t—a(p+1)—n(p—1
(1 —p)~ 94 (D) °qg, g gnp—1)yt—alp+)=n(p=1)
=3 C;pﬂ Yleap Cip! ZHEF; (]~ 1) T, ha-1

+ El D; .@p xi(p—1)+ayt—i(p—1)—oz

— Zi<ttup(@)-a)/(p-1) Di *T, hitp-1)1a
= Liz(t—a—n—vp(@)/-1) Di *T, M _i(p-1)-a
+ Eeg 0°h+ Feg b +O(p), (52)

for some polynomials h, k' and some E, F € Z, with v,(E) > v and v,(F) > v.

Proof. Lemma 6 implies that
S.(Di — D)) o, aiv-D+ayi-it-1—a
=3 Y 5O Y e [T (B W) 0T, hat +O(7).  (53)
Equation (53)) together with lemma 7| implies that
S A °q, mi(p—1)+ayt—i(p—1)—a
= O e )T (B Y) g, B

+ Zl D; .@p xi(p—l)+ayt—i(p—1)—a

— Zi<ttup(@)-a)/(p-1) Di *T, Ritp-1)+a
= Liz(t—a—n—vp(@)/(o-1) D5 *T Bi_i(p-1)-a
+ Eeg, 9“+1h+F0@p h + O(p™), (54)

for some polynomials h,h’ and some E,F € Z, with v,(E) > v and v,(F) > v.
Equation (54) can be rewritten in the form of equation (52) because

Zi Ai .@p $i(p71)+ayt7i(p71)fa
= (1—p) *94(Ds) °q, g gnp—1)yt—alp+)—n(p=1) (55)

4. PROOFS

We want to prove theorem M’ by computing ©. We accomplish this as the cumu-
lative result of the following six subsections.

4.1. If Q is an co-dimensional factor of ®, then Q is not a factor of ]/V\a,
for a« € {0,...,0—1}. For a € {0,...,0— 1}, let us define the matrix

M = (( r—atj

, , . 56
’@*1)”))& li(p—1)+a€(o,r—0)}, a—o<i<a (56)
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So the rows of M{" are indexed by those 4 such that i(p — 1) + « € (9,7 — 0), and
the columns of Mc(f) are indexed by those j such that o — o < j < . This means
that Mér) has C = p + 1 columns and

R | &322 Cp41=C (57)
rows, i.e. Mg) has no more rows than columns. Let

Mg)/ _ ( r—atj )
i 1%5) {ili(p—1)+ae(e,r—0)}, a—R<j<a

be the right R x R submatrix of Mg). We can write

r—a+j | _ r i(p—1)4ay/ r 1
(i(pfl)ij) - (i(pfl)Jra)( (Pa7; )(afj) ’ (59)
so the Z,-module determined by the image of the matrix ML contains the ZLyy-
module determined by the image of the matrix

(Gt (20

Lemma 9 implies that

(58)

)) : (60)
{ili(p—1)+a€(o,r—0)}, a—R<j<a

Up ((i(p—rl)—ﬁ-a)) < Ung(’r’ + 1)J =¢, (61)

so the latter Z,-module contains p* x the Z,-module determined by the image of
the matrix

Mo(f)” _ ( i(p—l)f‘y-a ) . 62

( a=J ) {i|i(p—1)+a€(o,r—0)}, a—R<j<a (62)
There exists a v € Zx( such that Mé”" is obtained from

M = ( ip=1)+ ) 63

( J ) 0<i,j<R (63)

by permuting the rows. By Vandermonde’s convolution formula,

(mymr _( (ilp=1) ) ) ( v )
Ma <( j )ogz‘,j<R (J*Z) 0<ij<R (64)

((jzi))ogi,j<3 (65)

is upper triangular with 1’s on the diagonal and
det ((771)) = (p—1)"det (()) (-1 (66)

0<ij<R
by a variant of Vandermonde’s determinant identity, the reduction modulo p of
M has full rank (in characteristic p). This in turn implies that the reduction
modulo p of Mc(f)” has full rank. Therefore, for each u such that

ulp—1)+a€ (o, —0), (67)
there exist constants Cy(r,u), ..., Co_pry1(r,u) such that
r T .
MY (Ca(r,u), ..., Camrra (r,w)” = 08 ([i = ul) i ip-1)racter—os  (68)
i.e. such that

Since the matrix

0<i,j<R

Z?:a—R—i—l Ci(r,u) (i(rp_—oi—)i_-f-l) =[i= u}pg (69)
for all 7 such that
ip—1)+ac€(or—0). (70)
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By adding linear combinations of equation (69) for varying u, we get that

o r—a+l i(p—1)+a, r—i(p—1)—«a
Zi(pfl)JraG(Q,rf@) Zl:a*g Cl(i(pfl)Jrl)m(p Degyr=ie=1)

+ Y ip—1)taci,gur—en Diz' Py
:pgeaxp—lyr—a(p—i-l)—p-l-l c ir’ (71)

for some Cj, D). Let D;(r) be the coefficient of z*P~1+ayr=ip=1)=a on the right

side of equation (71). Then, due to part (5) of lemma 6 and lemma 7 in [Ars21a,

u(Da(r) = 32, Di(r) (7, 7) (72)

is zero for 0 < w < «, and has valuation that is greater than or equal to £ for
w > «a, with equality for w = a. Let D; be the coefficient of g (P—D+ayr—ilp—1)-a
in

—a+l i(p— a, t—i(p—1)—a
Zi(pfl)jtae(g,tfg) Z?:afgcl(i(t;zy—1§+l)x (p=1)+ yt (e=1)

+ 2 i(r—1)+a€(0,0Ul—o/t] D}z e=Dfeyt=ip=l) =, (73)
where D! = D} and D} ;= D, _, for i(p — 1) + a € [0, g]. Since
up((i(p = 1) + )!) < vp(eh) <k (74)
for i(p — 1) + a € [0, 9], it is easy to show by using lemma 5 in that
Vi (Da) = Uy (Da(r)) + O(ep™*=W) (75)

for all 0 < w < W. In particular, we can apply lemma [§8| to the constants (D;);cz
and to v = &, and as a result get that

(1 =p)~*Va(Ds) 7, g z1(p=1)yt=alp+1)=n(p=1)
=5 L S O Y e [T (B W) 0, B
+ Vitp-1)+ach.guit—eq Di’ 0@, a'P DTy il me

~ 2i<mvy(@-a)/(p-1) Di T, Migp—1)+a

= 2is(t—a-n—vp(@)/(-1) Di *T, M _i(p-1)—a

+ Eeg, 0°T'h+ Feg, h' 4 O(p"), (76)
for some h, h' and some E, F € Z, with v,(FE) > € and v,(F) > €. Here
—a+l
D" = Dj - Zla:a—g Ci (i(tp—SH) (77)
for all ¢ such that

The left side of equation (76) is pf 1, where ¢ is an integral element whose reduction
modulo p represents a generator of N,. We can use lemma 6/ to get that the first
and second lines on the right side of equation (76)) are

O(pur(®)=e) = O(p®). (79)
We can also use equation (71) to get that
D; =0(p%) (80)
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for all 7 such that

ip—D+ael0,r—po)U({t—r+op,t]. (81)

This is because
D; = Dy(r) + O(epr(m) (82)

for all ¢ such that i(p — 1) + @ € [0,r — p), and

Dyi = Dr_i(r) + O(ep~»() (83)
for all ¢ such that i(p — 1) + « € (t — r + p,t]. We also have, due to equation (71),
Dy, = O(ep~ ) (84)

for all ¢ and all
W€ Lgo ULy na. (85)

This, together with lemma |6, implies that the sum of the third and fourth lines
on the right side of equation (76) is p® x an integral element whose reduction
modulo p represents the trivial element of N,. Finally, the fifth line of on the
right side of equation (76) is evidently p® X _an integral element whose reduction
modulo p represents the trivial element of N,. Therefore equation (76) gives an
element in ¥ that generates N,, implying that no co-dimensional factor of Oisa
subquotient of N,.

4.2. If Q is an oco-dimensional factor of ©, then Q is not a factor of ﬁa
fora € {o+1,...,v—1}. Let

¢ =[=2] - 1. (6)
Forae{o+1,...,v—1}and l € {a — ¢,...,a} let us define
Cl = Ag/(a,l)(aiJ. (87)

As in subsection 4.1 we can conclude that
[l r—a+l i(p— —i(p—1)— S
Zi(pfl)JraG(a,g’(pfl)#»oz] Zl:ozfg’ Ci (i(pfl;r+l)xl(p 1)+ay7" e 0el,.
(88)
Let D; be the coefficient of z*(P—1+oyt—ilp=1—a j

e} t—a+l i(p— a,t—i(p—1)—a
Zi(p—l)+ae(a,t—r+g’(p—1)+a] Zl:a—g’ Cl(i(p—{):-l)x(p Rl y* (p=1)~e, (89)

Then it is easy to show by using lemma 5 in [Ars21a] that
ﬂw(DO) = O(€p7k7W) (90)

for all 0 < w < W. In particular, we can apply lemma 8| to the constants (D;);ez
and to v =1, and as a result get that

Sy O S (5 ) 05, By

(p—1D)+a, t—i(p—1)—c

=7 Zi(p—1)+a€[0,o¢]u(t—r+g’(p—l)—f—a,t] D; °Q, zt Y
+ Zig(n-l-vp(a)—a)/(p—l) DZ .@p hi(?*]-)*%ll

+ Xiz t-a-n-vp(@)/-1) Di *T Mi_ip-1)—a +O@"),  (91)



14 BODAN ARSOVSKI

where
« —a+l
= Zl:a—g/ Cl (i(tp—l-;_—i-l) (92)
for all 7 such that
ilp—)+aecl0,a)Ut—r+0(p—1)+a,t]. (93)

By approximating D; with D;(r) + O(ep~*»(")) as in subsection [4.1 we can show
that the third and fourth lines of equation (91) are in

o(pap*vp(a)) = o(ap*a+(k*2vp(a)*p+3))
O(up a+(p—=3)(k/(p—1)— 1))
= O(ap~2¢). (94)
Consequently we get that
i 1)+ae[0 U=t o (1) bant] Sotma—e Cl(i(p y11) 0T, @'P D Feyt=ip=1)—e
o O D perx 1™ ‘(p) e, ha1 + Oap™*2). (95)

Lemma 6| and the definition of (C})a—p<i<e then imply that

Z'(p 1)+a€l0,q] X‘(po)'@p h‘(p D+a
+Z i(p—1)+a€(t—r+o (p— 1)+at]X ( ).Qp h: i(p—1)—«

=305 Yleag O X uerx I (5 1)) 0, hamt + O (p%),  (96)

where

Xi = p—i(P—l) (i(p—i)-i—a) (ngi)’

Xl* = pi(pfl)JrQOt*t (z(p—tl)+oz) (QQTZ) . (97)
By lemma 10,

’

vp(Xo) = vp (( ) ( (pil)(i(p—tl)—i-a)(ggji)) = vp(Xi) (98)

for all ¢ such that i(p — 1) + a € [0, ). By lemma[11]

vp(Xo) = vp (( )) < Up (pi(p_1)+2a_t (i(pjl)+oz) (Q;Ti)) = vp(X7) (99)

for all ¢ such that i(p—1)+a € (t—r+0(p—1)+ a,t]. By lemma 12,
vp(Xo) = vp (( )) < vp (Ag (a, 1) (a l)pl> =, (Cip) (100)
foralll € {a — ¢',...,a}. Moreover, by lemma (9,

op(Xo) = v, (1)) = v ((0)) < 2¢. (101)

So if we divide both sides of equation (96)) by (a) we get an integral element, and
if we reduce that integral element modulo p then the only contributing term to
the result is the “i = 0” term in the first line of equation (96). Therefore we can
conclude that .# contains

(57) ®7, has (102)

which represents a generator of ﬁa, and we can conclude the desired result.
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43. Ifr — o(p+ 1) = p — 2 and Q is an co-dimensional factor of ©, then
Q is not a factor of ind® sub(g). Let r — o(p+ 1) = p — 2, so that

sub(0) & 7,2(0). (103)

The proof in this case is very similar to the proof in subsection 4.1, so we just give
a rough sketch. We let

M = (( r—o+j

. . . 104
“P‘””)) (i li(p—1)+0€(er—0)}, 0<i <o (104)

As in subsection 4.1/ we can prove that the image of a certain lattice under the right
square submatrix of M (") (seen as an endomorphism) contains p x that lattice.
We can conclude the following analogous equation to equation (71):

r—o+l i(p— r—i(p—1)—

Y ip-1)+ee (-0 20 C1 (ipTyag) w0~ Feyr—ir=l=e
+ 2 i (p-1)+0€00,6]Ulr—g] Djz!=Feyr=ilp=1)=e

= pfheyr—elet) ¢ 3, (105)

for some integers D). The main difference with equation (71) is that we must write
g2y —e(P+1) instead of #2zP— 1y —e(P+1)=P+1 This means that we can only conclude
that

D, = O(epfvp(n!)) (106)
for all
W€ Lo ULy 1o, (107)
rather than for all w € Z¢g U Z- :—20 ) in the equation
X > —
(1—p)=29,(D,) o7, gegn(p—1)yt—elp+1)—n(p—1)
=3 ?:1 oo Cipt ZueIFS [ ~H (5 5) *q, o

i(p—1)+@yt—i(p—1)—g

+ Zi(pfl)JreE[O,@]U[t*@,t] Dy °Q, T
= 2i<(rtop(a)-0)/(p-1) Di 0T, Pitp—1)+0

~ Dz (—e—n—vy(@)/-1) Di *T, Di_ip-1)—

+ Eeg, 09t h+ Feg, I +0(p"), (108)

for some h,h’ and some E, F € Z, with v,(E) > € and v,(F) > £, which is the
analogous equation to equation (75). In other words, the difference is that Dg is
not negligible, and instead

Dy = ﬂQ(D.) + O(ep_vp(”!)), (109)

So upon dividing equation (108) by ¥,(D,) and reducing modulo p we get that .#
contains

1 °% (g2 (P=1)gt=olp+1)=—n(p=1) 4 hy). (110)

It is easy to show that his represents a generator of ind” sub(o) (but is trivial in
ind® quot(g)), which finishes the proof of the desired result as in subsection 4.1.
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44. Ifr — o(p + 1) = 1 and Q is an co-dimensional factor of ind® quot(p),
then Q is a factor of ind® quot(g)/Tq,e- Let r — o(p+ 1) =1, so that

quot(p) = op_2(0+ 1). (111)
We want to show that .# contains a representative of a generator of
Tq,0 (indG quot(g)) . (112)
Let
Ci=Ag(a0)(,) (113)
for 1 € {0,..., 0}. As in subsection 4.2l we can conclude that
Y ir-1)+oci0,0 Xi(57) 0T, hip-1)+0
+ Zi(p—1)+g€(t—r+ep7t] X7 (o) °Q, h:—i(p—l)—y
=3507 im0 O Xy [T (B W) 0, hot +0(p%), (114)
where

Xi = pii(pil) (i(p—t1)+g) (Q;i)’

X = plim9-1-1 (i(pf1)+g) (agi). (115)
Again, by lemma 13
0 (X0) =0 () < v (P70 D (00 (50)) = X0 (116)
for all 7 such that i(p — 1) + ¢ € [0, 0). By lemma |14}
vp(Xo) = v, ((;)) <, (pu—g)(p—l)—l (1) (e;i)) = u,(X7) (117)
for all ¢ such that i(p — 1) + 0 € (¢t — r + op, t]. By lemma [15,
0p(X0) = v, ((£)) < v (Mole.D)(,)P') = v (Cr) (118)
foralll € {1,...,0}. And, by lemma 9,
up(Xo) = vy (1)) =00 () < 2¢. (119)
This means that if we divide both sides of equation (114)) by (2) and reduce the

resulting integral element modulo p, the two contributing terms are the “i =0”
term in the first line of equation (114) and the “/ = 0” term in the third line of
equation (114). Therefore .# contains

Yper, (5 141) o5, he, (120)
which is a representative of a generator of

Ty (ind quot(o)) (121)
and that completes the proof.

Proof of theorem M’ (< theorem M). Let Q be an infinite-dimensional factor of
O¢42,q4. Subsections 4.1/ and 4.2 imply the following two facts about Q.

1. Q is not a factor of N, for o € {0,...,0—1}.

2. @ is not a factor of N, forae{o+1,...,v—1}
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From these two facts we can conclude that either Q is a factor of ind® sub(p) or it
is a factor of ind” quot(p). In light of theorem [5| and as in section 10 of [Ars21al
this implies equation (28) for r — o(p+1) € {—1,...,p — 1}\{-1,1,p — 2}.

Subsections [4.3| and 4.4/ prove the following facts for r — o(p + 1) € {1,p — 2}.

3. If
r—o(p+1)=p—2 (122)
(and therefore sub(g) = 0,—2(0)) then @ is a factor of ind® quot(p).
4 If
r—o(p+1)=1 (123)

(and therefore quot(g) = o, 2(0+ 1)) and Q is a factor of ind” quot(g) then Q is
a factor of of ind® quot () /Ty.,-

These two claims imply equation (28) for r — o(p + 1) € {1,p — 2}. Since we assume
that p+ 11k — 1, we have r — o(p + 1) # —1, and therefore the proof is complete.

Proof that theorem M implies corollary|C. As in subsection 4.2 of |[BLZ04] we can
use theorem M to conclude that p; is supported on

1 log, 1 log, 1
[Ovm + 71 } U [;ﬁ - T 71] ; (124)
and that completes the proof because
log,, [
T = 0 (125)
as | — co—we omit the details. L]

5. COMBINATORICS

Lemma 9. Ifa € Zs1 and B € {0,...,a} then
Up ((g)) < [log, af. (126)

Proof. A theorem by Kummer says that

v ((g)) (127)

is the number of times one carries over a digit when adding # and o — 3, and is

therefore strictly less than the number [log, o] + 1 of digits of a. L]
Let a € {g,...,v — 1}, let
o = [=2] -1, (128)
and for l € {a—¢,...,a} let
Cr=Ay(a,))(,))). (129)

Note that o' < g andif r = ¢'(p+1) + 1 and a = g then ¢’ = p. The constants C;
are precisely those constants that satisfy

Sy Ci(,m) (DA = (Y e @ [X). (130)
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Moreover, let

Xi= pii(pil) (i(p—rl)+a) (QQ’ 1) for i € Z
Xp = pir-De2emr (ot ) (€ for i € 2 (131)
Lemma 10. Ifa > g andi(p— 1)+ a € [0, ) then

vp (Xo) < vp (Xi). (132)

Proof. Note that ¢ < 0, so let us write j = —¢ > 0. We have
Xo=(2):
X =9/ 60) 7)) =P Q) earteng — 57)- - (133)

a—j(p—1) a) (r—a+j(P—1));p-1) J

Therefore we want to show that

vp ((r—a+jp—1)jp-1)) < vp (Wp-1)) +vp (¢ +4);) +ilp—1) —vp(4").

(134)
Note that v,(j!) < p —L+, 50 it is enough to show that
0y ((r=a+ (= D)jp1) < (ag-1) +p (¢ +4)) +5 (p— 1~ 7)
(135
We have
[ <o g =[5 -0 (136)
We also have
[r=atl] > ¢ 4 1 = [z22], (137)
Therefore each term of the product
(r—a+ijlp—1)jp-n=r—a+tjlp-1) - (r—a+1) (138)
that is divisible by p is p times a term of the product
(@ +35);=(+35)(d+1), (139)
implying that
Up ((r—oz—l—j(p— 1))j(p71)) <vp ((0' +7)5) +w, (140)

where w is the number of terms of the product in equation (138) that are divisible
by p. Equation (135) follows from the fact that

w < Lj(Pfll))ﬁLp*lJ < j ( _1- ﬁ) (141)

| ]
Lemma 11. Ifa>gandi(p—1)+a € (¢'(p —1) + a,7] then
0y (Xo) < vy (X7). (142)

Proof. We have i(p — 1) + a € (¢'(p — 1) + o, 7] and therefore

j=ilp—1)+2a—-rc¢€ [f%](p—l)—i—%z—r,a} C {%,a} C (0,q].
(143)
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So we can write

Xo=(3),
XZ* = pi(p71)+20577“ (7(;()—71)-1—04) (QQTZ.) = p] ((7;) (T—Zi‘rj)j (QQTi) ' (144)
Therefore we want to show that
vp ((r = a+);) < vp (o) +vp (%)) +3 (145)

‘We have

i\ S N froi=1 0y (i—1)---(0'+1)

(°y ) =D () = (D2 (1,0) = (D =i (146)
Because a > ¢’ and i > Q we have r <ip+ a — 1, and therefore a — j <i— 1.
Moreover, a > o+ 1 > ¢’ + 1. Therefore the union of the intervals (o' + 1,7 — 1]

and (a — j + 1, o] is a single interval. This implies that
vp (o (1 = 1)i—gr—1) = vp (max{i —1,a}---min{o + 1,a — j}). (147)
We also have
vp (i — ¢ — 1)) < =LEL (148)

p—1

Since

pmax{i—l,a}+p—12r—a+jand pmin{e +l,a—j} —p+1<r—a+1,
(149)

we have
vp ((r—a+7);) <vp(max{i—1,a}-- min{g’—l—l,a—j})—i—%. (150)
So it is enough to show that

. j+p—1 i—o'—1
]>]+%+1pg_1 ’ (151)
which follows from
(i(p—1)+2a—r)(p—1) > ize '+p—2 (152)
P p—1 o,
The latter inequality follows from the fact that (i) = @ (p71)+2§7r)(p71) - ’_L;:f_2
is increasing in ¢ and v(¢' + 1) > @ —-1>0. "
Lemma 12. Ifa>pandl € {a—¢,...,a} then
vy (Xo) < vp (Cip) . (153)
Proof. Forle{a—/¢,...,a} let
=1
Cl=C(",) €y, (154)
so that
Yicae G = (7,7) € @l (155)
We have
Xo = (2),
Clpl = Cl/(ar ) Cl( ) (r— a+l) pl (156)

So we want to show that
vp (C]) > vp ((r—a+1)1) —vp (ag) — L. (157)
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First suppose that a(p+ 1) +p—1>r+1. Thenpa+p—1>r — a + [, implying
that the largest term in the sequence (r —a +1,...,r — a+ 1) that is divisible by
p is at most as large as p times the largest term in the sequence (a, ..., — I+ 1).
Moreover,

pa—pl+l1<pa—pla—od)+1=pd+1<r—a+1, (158)

implying that the smallest term in the sequence (r —a+1,...,r — a+ 1) that is
divisible by p is at least as large as p times the smallest term in the sequence
(a,...,a—1+1). Therefore

v ((r— a4+ 1) —vp () =1 <w—1 < [ B2 1 <0, (159)

where w is the number of terms in the sequence (r —a+1,...,r —a+ 1) that
are divisible by p. Equality in equation (159) holds if and only if =1 and
r —a+ 1 = pa, which can never happen. So the right side of equation (157) is
negative, implying equation (153)) in the case when a(p+1)+p—1>r+1. Now
suppose that a(p+ 1) + p < r + 1, so that

Izpla—0d)+p—1=22p—1. (160)
Forje{a—1¢,...,a} let
Cf = (=1)?(p— 1)j—acj’.g;,a+g, € Zp, (161)
so that
S g OIS (X ) = (X ) (X =) € QX (162)

We use the fact that among any [ consecutive integers there can be at most one
whose valuation is at least log, [. Moreover, if there is such a term then the sum
of the valuations of all the other terms is at most Il;—ll, and if there is no such
term then the sum of the valuations of all the terms is at most Il)_fll + [log, 1]. So
if there is no term in the sequence (r — a +1,...,7 — a + 1) whose valuation is at

least log,, [, then

v ((r—a+ 1)) — 1 < [log, 1] — =2 <0, (163)
SO
T o ! T 1 1 s

v (GO =2#) = 00 (D =tsm') > w0 ((2)).- (164)
Suppose now that there is a term in the sequence (r —a +1,...,7 — a + 1) whose
valuation is v > log, . If v < l(;:%f) then we can similarly deduce that

o (C1) i) = v () =) > 0 ((2)) 4 (165)
so suppose that v > 1(5:12) > log, I. If the term in (r —a +1,...,7 —a + 1) whose
valuation is v is p times a term in (¢, ...,a — [+ 1), then we can similarly deduce
that

0 () =2v) = 00 () =2 #) > w0 ((2)) (166)
so suppose that the term in (r —a+1,...,7 — a+ 1) whose valuation is ~ is in

the subsequence (r —a +1,...,p(a+1)). Let ¢ = p?~1. Informally speaking, the
assumptions that ¢ is a “large” power of p and that (p(o' +1)+1,...,p(a+1))
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contains a multiple of pq (say bpq) and that o > ¢’ imply that o and ¢’ are “just
below” a multiple of ¢, and

(p—2)
o +1l/p+1=2bg>a>p and q >plpfl2 Landi>2p—1. (167)
U—x

For u € {0,...,0 — 1} let 2, be the integer in {1,...,q} that is congruent to =t
modulo ¢, and for j € {a — ¢',...,a} let C}" be such that

Y O T T (X = 20) = TS (X = )P [T,y (X — )21 € Q[ X,
(168)

where s = bg — ¢’. By reducing equation (162) modulo ¢ we get C = C}" mod q.
Forje{a—1¢,...,a},let F;(X)=T[023"" (X — 2,). Then

u=0
Fo(X) [+ | Famg (X)), (169)
and if ig € {a — ¢/, ..., a} is the smallest index such that F; (X) divides
G(X) =TTI20 (X =) TT o (X =), (170)

then equation (168) implies that C" =0 for all j € {io + 1,...,a}, and therefore
C7 =0mod q for all j € {ig+1,...,a}. We want to show that 19 > [, i.e. that

Hi;é (X —z) | G(X). (171)
We have
T2 (X = 2) = [T (X =), (172)
so in order to show equation (171) it is enough to show that
1ozl 1)y (X = 2u) | TIEZS (X — ), (173)
i.e. that the sets
{bg—a+ilie{0,...,.a—1—(b—1)q}} (174)
and
{a—(-1)ilie{0,....,bg — o —1}} (175)

are disjoint. This follows from

I1>plbg—o —1)
=1>(p—-1)(bg—0o —1)

= q—1l<qg—(p—1)(bg—0o —1). (176)
So i > I, and therefore C}' = 0 mod ¢. Since
Xo = (3),
r +1
Cp' = Cl/<a) (r— a+l) =) o (§+z)l)p ) (177)
and since v,(C}") > v — 1 and
vp ((r—a+ 1)) <y+ 3% (178)
and
-2 1= 002 5 94— 2) > 0, (179)

we can deduce equation (153) and complete the proof. L]
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Lemma 13. Ifr=po(p+1)+1 anda =g and i(p—1) + 0 € [0, 0) then
vp (Xo) < vp (X5). (180)

Proof. The proof is similar to the proof of lemma 10. Note that ¢ < 0, so let us
write j = —i > 0. We have

XO = (Z)a
C_ i(p—1 r +3) _ i(p—1) (T Qi(p=1) +3j
X; =pt )(gfj(pfl)) (QQJ) =p' )<9) (@p+j(pil)+1)j<p—1> <gjj)' (181)
Therefore we want to show that
Up ((Qp +j(p —-1)+ 1)j(p71)) < Up ((9 +j)jp) +J (p —-1- p%l) ) (182)
since v, (j!) < p%l. Since
(e+7)p>op+ijlp—1)+1land ogp+2>(0—j(p—1)+1p, (183)
each term of the product
(op+3(p—1) + 1)1 (184)
that is divisible by p is p times a term of the product
(0+7)jp- (185)
This together with
i(p-1-5t) > G (186)
implies equation (182). "

Lemma 14. Ifr=p(p+1)+1 and o = ¢ and i(p — 1) + o € (op, ] then
0, (X0) < vy, (X). (187)

Proof. The proof is similar to the proof of lemma[11. We have i(p — 1) + ¢ € (op, 7]
and therefore

j=>{—-0-1)—-1€[p—20. (188)
So we can write
_ (T
XO - (g)v
% _ g (T 0; —i\ _ (T (i=1)i—ptj—
Xi=p (9) (ep+7+1); (99 ) = (=1’ (0) (gp+j+1)j(i+—gil)!’ (189)

where the last equality follows as in the proof of lemma |[11. Therefore we want to
show that

vp ((op+ 5+ 1)) + S5 <y (1 = Dimgyj1) + 40 (190)
Since ip—1>i(p—1) + o and gp — jp+ 1 < gp + 2, we have
vp (00 + 7 +1)5) S wp (i = Dimgrjmr) + L, (191)
and equation (190) follows from
. jtp—1 | i—p—1
J> % + ﬁa (192)

as in the proof of lemma [11. L]
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Lemma 15. Ifr=p(p+ 1)+ 1 anda=p andl € {1,..., 0} then

vp (Xo) < v (Cip') - (193)
Proof. For 1 €{0,...,0} let
Ci=0C(,L) " €2y, (194)
so that
o (5T = (4)) € Qolx]. (195)
We have
Xo = (5):
Cpt = Cl’( ")t =0 )Wpl (196)
Therefore in order to prove the lemma it is enough to show that, for I € {1,..., o},
vp (C7) > vp ((op + 1+ 1)1) = vp (21) — L. (197)

Note that equation (197)) is not true for [ = 0, since both sides are zero. As in the
proof of lemma 12} if [ < p — 2 then we can deduce that

vp ((ep + 1+ 1)1) — vy (@) — 1 < B2 — 1 <0, (198)

with equality if and only if [ = 1 and gp + 2 = gp, which can never happen. So let
us assume that { > p — 1. For j € {0,..., 0} let

Cf = (=1)2(p —1)772Cjp; € Ly, (199)
so that
C OIS (X +28) = (X = 1) (X —0) €Q[X]. (200)

As in the proof of lemma (12, if there is no term in (gp+1+1,...,0p + 2) whose
valuation is at least log, [, then

vp ((p+1+1)1) — 1 < [log, 1] — =2 <, (201)
implying equation (197). Suppose now that there is a term in
(p+1+1,...,0p+2) (202)

whose valuation is v > log,l. If v < l(p 2) then we can sumlarly deduce equa-
tion (197) as in the proof of lemma 12 50 suppose that v > (p 2) > log, I. Let
g = p"~!. We have, for some positive integer b,

2)
o+ (+1)/p>= bq>gandq>pp1_ and [ >p—1. (203)
For u € {0,...,0— 1} let 2z, be the integer in {1,...,q} that is congruent to g

modulo ¢, and for j € {0,..., o} let C}" be such that
Lo O Tzt (X = 20) = [T (X = )P TTE o (X — )P0 € Q[ X, (204)

Where s = bg — ¢. By reducing equation (200) modulo ¢ we get C}' = C}" mod g.
For j € {0,...,0}, let Fj(X)=T[]%23"" (X — 2,). Then

Fo(X) |-+ [ Fo(X), (205)
and if ig € {0,..., o} is the smallest index such that F; (X) divides
G(X) =TI (X =) [Ty (X =), (206)
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then equation (204) implies that C7" =0 for all j € {ig + 1,..., ¢}, and therefore
C7 =0mod g for all j € {io +1,...,0}. So again, as in the proof of lemma 12, we
can complete the proof by noting that

1>p(bg—o0)—1
= 1>(@p—-1)(bg—0—-1)
= q—1<q—(p—1)(bg—0—1)
=iy > I, (207)

and therefore that, due to equation (196), equation (193) follows from

[Ars21al
[Ars21b]
[BL
[Ber10]

[BLZ04]

[Bre03)]
[Buz05]
[Chel3]
[Colog]
[CFO0]

[Gou01]

vp (C]) +vp (01) —vp ((ep + 1+ 1)1) =1

_ 1—1)(p—2 —2)2
>y—1-y- 4= 02625 20 5, (208)
n
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